

A POCKET GUIDE FOR SCRUM TEAMS
I created this pocket guide for anyone
who wants to learn about Scrum and how
to get the basics up and running.

The book is divided into 4 parts:
• Part I is an introduction to Agile, comparing

it with other approaches to product development.

• Part II focuses on explaining Scrum, covering
all rules, roles and main principles.

• Part Ill is a collection of best practises that can
be a helpful guide on the journey of discovery and
fun, showing to the reader the playfulness of Scrum.

• Part IV explores some tactics and hints
that allow Scrum to be played on a larger scale.

"I love how succinct and clear the writing is.
Complex concepts are boiled down
into the most essential pieces to make it really
accessible to the readers. Very nice!,,
(l<elly Cook, Agile Coach at AND Digital)

 First published in 2022 by Katya Agosti
 —---

 A pocket guide for Scrum Teams
 A collection of rules, principles, and practises for
everyone who wants to learn about Scrum

 Subjects:
1. Introduction to Agile
2. Scrum roles and rules
3. Collection of practical tips and tricks
4.Scrum played at scale

 —--

 This book i s i ntended to be an i ntroduction to Scrum. The
content of the book i s a collection of rules and practises I
experiment i n my daily work. I summarised here what I
think everyone should l earn about Scrum to get the basics
up and running, and I am sharing i t for educational
purposes.
The material in this publication does not represent
professional advice and i t should not be relied on as
the basis for any decision to take action or not take
action on any matter which i t covers.
All rights reserved. You cannot copy and redistribute the
material i n any form or by any means without prior
writer permission, and you cannot use the material
for commercial purposes.
All enquiries should be made to katya.agosti@gmail.com

 Author: Katya Agosti

Cover Design: Valeria Agosti

ISBN: 9798420198308

 To Rosario,
 who encourages me to explore the world

 Table of Contents

 Introduction...9

 Part I - Introduction to Agile

Chapter 1 - Origins of Agile..13
 Chapter 2 - Agile vs Waterfall: which one is right for your project?........15
Chapter 3 - Agile and Lean..21
 Chapter 4 - Agile frameworks...27

 Part II - Scrum roles and rules

 Chapter 5 - Origins of Scrum..35
 Chapter 6 - Scrum pillars and values...39
 Chapter 7 - The game of Scrum...45

 Part III - Collection of practical tips and tricks

 Chapter 8 - Monitoring progress towards a goal....................................59
 Chapter 9 - A better stand-up by walking the board63
Chapter 10 - Nine common Sprint Planning anti-patterns......................67
Chapter 11 - Sailboat retrospective..73
 Chapter 12 - User Stories and Story Points...77
 Chapter 13 - Common mistakes when using Story Points.....................83
Chapter 14 - I.N.V.E.S.T in good stories..87
 Chapter 15 - Definition of Ready..91
 Chapter 16 - Agile Estimation...95
 Chapter 17 - Estimation techniques...99
 Chapter 18 - Four practical suggestions for better estimates................107
Chapter 19 - S.P.I.D.R..111
 Chapter 20 - The Shu-Ha-Ri model and Scrum maturity.......................117

 Chapter 21 - Metrics..121
 Chapter 22 - Release planning..131
 Chapter 23 - Agile games..137

 Part IV - Scrum played at scale

 Chapter 24 - Main challenges when scaling Agile...............................147
 Chapter 25 - Major frameworks for scaling Agile.................................153

 Glossary...162
 Meet the Author...167
 Thank-you notes..168
 Bibliography...169
 Online References...171

 Introduction

 It i s hard to start a career as Scrum Master with j ust a
 certification. Companies that will hire Scrum Masters
 with knowledge and no experience are difficult to find.
 One good way to start i s by finding opportunities to be
 part of a Scrum Team and then slowly embark on a
 Scrum Master career. This was my career path. After
 getting my Scrum certification, I started my agile j ourney
 as a l ead developer i n a Scrum Team. Later I started
 helping the Scrum Master with some of his
 responsibilities, until eventually I took over from him i n
 the Scrum Master role. Moreover, i n order to keep
i mproving my skills, I have been regularly attending
 Scrum/Agile meetups, reading Scrum Masters blogs and
l ots of books.
 Now that I have l earned the basics, and perhaps a l ittle
 more, of the Scrum framework, I have decided to start
 sharing my passion regarding the Scrum Master role,
 and my thoughts and experience on Scrum with the
 world.
 By writing this book, I have better hardened my own
 understanding of Scrum. Knowing that others can
 benefit from reading about my experience i s something
 that brings me great joy and satisfaction.

 Who is this book for?

 This is a book for anyone who wants to learn about
 Scrum and how to get the basics up and running. If you
 are a beginner, you may want to read the whole book
 from cover to cover. If you are already familiar with
 Scrum, you can use this book as your reference guide.

 How this book is organised

 This book is divided into 4 parts:

 The first part is an introduction to Agile, comparing it
 with other approaches to product development.

 The second part focuses on explaining Scrum, covering
 all rules, roles and main principles.

 The third part is a collection of good practises that can
 be a helpful guide on the journey of discovery and fun,
 showing to the reader the playfulness of Scrum.

 The fourth part explores some tactics and hints that
 allow Scrum to be played on a larger scale.

 Hope you enjoy reading this book as much as I enjoyed
 writing it.

 Happy reading!

10 A Pocket Guide for Scrum Teams

 Part I

 Introduction to Agile

12

 Chapter 1

 Origins of Agile

 Agile is an umbrella term for several product
 development approaches sharing the principles and
 values described in the Manifesto for Agile Software
 Development (known more commonly as the Agile
 Manifesto), officially introduced in 2001.

 The Agile Manifesto was written by seventeen software
 development leaders, who agreed there was an
 increasing need for an alternative to heavyweight
 software development processes and, despite having
 widely varying opinions on the right approach, did find
 consensus around four core values described below:

 “We are uncovering better ways of developing software
 by doing it and helping others do it. Through this work
 we have come to value:

 1. Individuals and interactions over processes and
 tools

 2. Working software over comprehensive
 documentation

 3. Customer collaboration over contract negotiation
 4. Responding to change over following a plan

 That is, while there is value in the items on the right, we
 value the items on the left more.”

 They also laid out 12 principles that stand behind these
 values. Those principles include:

 ● Satisfying customers through early and
 continuous delivery of valuable software

 ● Welcoming changing requirements at any point
 in the delivery cycle

 ● Delivering software frequently through shorter
 development timelines

 ● Using working software as the primary measure
 of progress

 ● Taking regular moments of self-reflection to
 identify opportunities for improvement

 The 4 values and 12 principles continue to guide the
 Agile approach used by teams today.

14 A Pocket Guide for Scrum Teams

 Chapter 2

 Agile vs Waterfall: which one is
 right for your project?

 Before Agile, the Waterfall model, which is just one
 example of a broader class of plan-driven processes
 adapted from manufacturing, was considered the best
 practice for software development.

 In this chapter I compare Agile, an approach based on
 flexibility and continuous improvement, with Waterfall, a
 lin ear and predictive paradigm. To avoid
 misunderstandings, I want to add that by predictive I
 mean that Waterfall greatly emphasises the importance

 of anticipation versus adaptation, while Agile
 emphasises the opposite. But I am not saying that Agile
 teams don’t plan. Adaptive planning is an integral part of
 any agile project.
 Moreover, my goal of making this comparison is not to
 convince you that Waterfall is bad and that Agile is
 good; both the approaches carry their own set of
 strengths and weaknesses to project delivery, and both
 have projects more suited to them.

 The waterfall model, introduced in 1970, quickly gained
 popularity because it brought discipline in software
 development. It is a sequential design process, in which
 progress is seen as flowing steadily downwards (like a
 waterfall) through several distinct phases:
 Requirements, Design, Implementation, Test, Deploy,
 Maintenance.

 The Waterfall model does have advantages, such as:

 ● It is easy to understand and use, it follows the
 same sequential pattern for all projects.

 ● Discipline is enforced, indeed every phase has a
 start and an end point. It is easy to share
 progress with customers.

 ● Puts great emphasis on documentation. The
 detailed documentation makes it easier to hand
 over to separate support teams. Moreover, in
 case of employee turnover, the strong
 documentation allows for minimal impact on
 plans.

16 A Pocket Guide for Scrum Teams

 ● It is good to be used when the project is a
 familiar territory with a predictable path and the
 client knows what to expect.

 It has also quite a few disadvantages, including:

 ● Clients usually appreciate what is needed when
 the application is delivered, therefore lots of
 educated guesses and assumptions are made
 upfront, but software is not delivered until late.
 The coding begins only at the third phase.

 ● Once a phase is completed, you are not
 supposed to go back. If the team discovers that
 a requirement is missing while being in the test
 phase, this could have an impact on the rest of
 the project.

 ● Changes cannot be easily accommodated: if
 requirements change, the plan and the budget
 will be adversely impacted.

 Agile addresses the limitations of Waterfall, but it also
 has a few drawbacks, besides strengths.

 Some of the Agile strengths are:

 ● Change is embraced: with shorter cycles, it is
 easy to accept changes in requirements at any
 time.

 ● It is very good when the end goal of the project is
 not well defined or when the end outcome is
 clear but there is flexibility in how it is met.

171.2 - Agile vs Waterfall: which one is right for your project?

 ● Breaking down the project into iterations allows
 the team to focus on high-quality development,
 test, collaboration. Having tests during each
 iteration permits the team to find and fix bugs
 quickly.

 ● Working software is delivered at each iteration
 and customers have the opportunity to use it,
 share their input and have a real impact on the
 project.

 ● Feedback from users and team members is
 encouraged, so lessons learned are used to
 improve future iterations.

 Some of the Agile drawbacks are:

 ● Planning can be less concrete as tasks can be
 reprioritized at each iteration, it is possible that
 some work items initially scheduled for delivery
 may be not completed in time.

 ● The team must be knowledgeable. Agile teams
 are usually small, so team members must be
 highly skilled in a variety of areas.

 ● Documentation may be neglected. One of the
 Agile values puts emphasis on working software
 rather than extensive documentation, so team
 members could consider documentation less
 important. The team should find the right balance
 between documentation and code, and
 acknowledge that this can be challenging for
 them to balance sometimes.

18 A Pocket Guide for Scrum Teams

 As I said at the beginning of the chapter, the key to
 deciding which is right for you comes down to the
 context of the project. If it is going to be changing
 rapidly, eg. groundbreaking project with uncertain
 outcomes and high rates of change, complexity, and
 risk, choose Agile. In case you know exactly what you
 need, eg. produce a predetermined end result within a
 specific date and no flexibility in how to deliver it, then
 maybe Waterfall is the better option. A third option could
 be to consider taking aspects of both methodologies and
 combining them in order to make the best possible
 software development process for your project.

 If you are interested in bringing agile development to
 your team or organisation, keep reading.

191.2 - Agile vs Waterfall: which one is right for your project?

20

 Chapter 3

 Agile and Lean

 We often consider Lean and Agile to be two different
 philosophies. However, if we take the principles of Lean
 to heart, we end up creating an Agile team as well. In
 fact, many advanced Agile coaches now use ideas and
 vocabulary from lean when teaching teams.
 When we talk about Lean, the first name that strikes our
 mind is Toyota. However, the history of Lean started in
 1913 with Henry Ford who was the first to truly integrate
 the concept of lean in the manufacturing system.

 Ford created what he called a flow production (also
 known as mass production), which involves continuous
 movement of elements through the production process.
 Ford used mass production to fabricate and assemble
 the components of his vehicles within a few minutes
 rather than hours or days. Unlike craft production, the
 mass production system delivered perfectly fitted and
 interchangeable components.
 It was only in the 1930s that Toyota, inspired by Ford’s
 flow of production concept, developed several novel
 ideas that became known as the Toyota Production
 System (TPS). After studying Ford’s production system,
 they understood that the mass production system
 employed by Ford could not be used by Toyota. The
 Japanese market was too small and diverse for mass
 production. The customer’s requirements ranged from
 compact cars to the most luxurious vehicles, but Ford’s
 mass production system focused on standard products
 which could not meet all the customer demands.
 Therefore, Toyota collaborated with the engineer Taiichi
 Ohno to build upon Ford’s ideas and found a way to
 make high quality and low cost products that met the
 changing desires of the customer. They created a
 unique pull system, which then became the backbone of
 lean manufacturing, to avoid overproduction and meet
 the diversified customer demands.
 Ideas from the Lean movement in manufacturing
 became internationally known and recognized during the
 1990s and gradually began to be applied to software.
 Lean is centred on defining value from the customer’s
 viewpoint, continually improving the way in which value

22 A Pocket Guide for Scrum Teams

 is delivered, and eliminating every use of resources that
 does not contribute to the value goal.
 The concept of continuous improvement, or Kaizen
 (which come s from two Japanese words, Kai and Zen
 which mean “improvement” and “good”), is at the heart
 of Lean philosophy. The goal of continuous improvement
 is to help identify opportunities for work process
 enhancements. This is done by empowering every
 individual worker to achieve his or her full potential, and
 so to make the greatest possible contribution, helping
 workers grow professionally and personally, allowing
 them to take pride in their work.

 Lean and Agile are truly blending philosophies. Agile
 has distinct practises that match the main Lean
 principles and below are highlighted a few similarities
 between them.

 Respect for people . People refers to every possible
 actor in the whole ecosystem of product development:
 customers, workers, teams, managers. All people
 contribute in their own way and collaborate across skills
 to build and deliver a product. Respect for people is
 essential for Lean, and Agile embraces this principle
 too, as emphasised in the Agile Manifesto (principle #5:
 Build projects around motivated individuals. Give them
 the environment and support they need, and trust them
 to get the job done).

 Continuous flow of results . Agile mirrors the flow
 principles of Lean that have proven to be successful.

231.3 - Agile and Lean

https://theleanway.net/what-is-continuous-improvement

 Agile is about working smarter, rather than harder. It’s
 not about doing more work in less time, it’s about
 generating more value with less work (principle #10:
 Simplicity - the art of maximising the amount of work not
 done - is essential).

 Focus on customer value . Customer value is defined,
 in Lean thinking, as the perception of what products and
 services are worth to customers. In truly Agile
 organisations, everyone is passionately obsessed with
 delivering increasing value to the customer. Everyone
 has a clear line of sight to the end-user and can see
 how their work is adding value to that customer, or not.

 Eliminate waste . One of the key elements of Lean is to
 relentlessly identify and eliminate anything that doesn’t
 create value. Agile supports this concept as well, by
 maximising the amount of work not done so that the
 team focuses on building the simplest solution, doing
 the least amount of work possible in order to deliver the
 right value.

 Continuous improvement . This is where Kaizen, a
 Lean method for continuous improvement, comes into
 play. Kaizen focuses on improving and evolving
 processes to better support the evolution of the product
 and enable Agile teams and organisations to reach their
 goals of frequent, iterative value delivery. The practice of
 Kaizen ensures every iteration is better than the last in
 some way.

24 A Pocket Guide for Scrum Teams

 At the end of the day, we’re all realising that it’s not
 about picking one process or methodology and following
 it like it is gospel. It’s about combining all our best
 practises and learnings together and then using what
 makes sense in our contexts, given what our
 organisation goals are.

251.3 - Agile and Lean

26

 Chapter 4

 Agile frameworks

 Now that we have fully equipped ourselves with the
 basics and abstract principles of Agile, let’s have a look
 at some of the practice-oriented frameworks that turn
 them to life.

 SCRUM

 It is the most popular agile framework. The name is
 borrowed from rugby, where a scrum is a cluster of
 players trying to get the ball. The term scrum was
 chosen by its authors because it emphasises teamwork.
 Scrum is a lightweight, iterative and incremental
 framework for managing complex work. The framework

https://en.wikipedia.org/wiki/Iterative_design
https://en.wikipedia.org/wiki/Iterative_and_incremental_development

 challenges assumptions of the traditional, sequential
 approach to product development, and enables teams to
 self-organise by encouraging close collaboration of all
 team members.
 We will find out more about Scrum in Part II of this book.

 XP

 XP stands for eXtreme Programming. XP got its name
 because it takes cherry-picked programming practises
 to extreme levels. It places a strong emphasis on
 technical practises in addition to the more common
 teamwork and structural practises.
 One of the key aspects is that XP teams perform nearly
 every software development activity simultaneously.
 Analysis, design, coding, testing, and even deployment
 occur with rapid frequency. That’s a lot to do
 simultaneously. XP does it by working in iterations:
 week-long increments of work. Every week, the team
 does a bit of release planning, a bit of design, a bit of
 coding, a bit of testing, and so forth.
 XP works towards a continuously improving and high
 quality product that will allow the team to respond
 quickly to customers' changing requirements. The
 framework aims to do that and reduce the cost of
 development, in the short term as well as in the long
 term, by improving the internal quality of its code and
 design.
 Some of the XP core practises that keep the code clean
 include Test Driven Development, Refactoring,

28 A Pocket Guide for Scrum Teams

 Customer Testing, Simple Design, Continuous
 Integration, Small Releases and Pair Programming.
 More and more often, we can see XP practises used by
 teams that utilise Scrum and other organisational Agile
 approaches to unlock the most out of the developers'
 potential.

 CRYSTAL CLEAR

 Crystal Clear is an agile framework focusing on
 individuals and their interactions, rather than processes.
 The method has a few key properties needed to
 successfully run an agile project, such as:
 Focus. Executives and leaders must set priorities and
 make it clear what developers should be spending their
 time on. Then the developers must be given time,
 without interruptions, to work on those priorities. Teams
 should be allowed to set up two hours of each working
 day where no interruptions are allowed including
 meetings and phone calls.
 Personal safety . Team members must be able to speak
 up when something is bothering them without fear of
 reprisal. When able to speak freely a team can discover
 and fix its weaknesses. Three things software
 developers must be open about, in relation to the
 project, are being able to reveal their ignorance, errors
 made, and any incapacity they have in meeting the
 requirements of an assignment.
 Easy access to expert users . Getting prompt response
 from users, and especially to questions, is key. When

291.4 - Agile frameworks

 problems occur because users do not want frequent
 releases, one solution is to find a single user willing to
 try out the new software on a trial basis. Not only with
 Crystal Clear, but with any agile framework, getting back
 user feedback is critical.
 Technical environment with automated tests and
 frequent integration. Development teams, running
 Crystal Clear, integrate the system multiple times per
 day, or at a minimum, once daily. Moreover, doing
 continuous integration they will be able to detect
 integration level errors within minutes.
 In general Crystal Clear method works best for small
 teams of six to eight developers, preferably being
 co-located as it facilitates osmotic communication.
 Moreover, teams using other agile approaches can
 borrow useful techniques from Crystal Clear and vice
 versa.

 KANBAN

 Kanban has its origins in Just In Time (JIT)
 manufacturing processes at Toyota automotive. In the
 early 1940s, Toyota needed to increase the efficiency of
 its production to stay competitive with its American
 rivals, and Toyota engineer Taiichi Ohno looked at
 supermarkets for inspiration. Observing how
 supermarkets restock their goods based on what’s been
 picked off the shelves, he created a simple supply
 system where production plans would be driven by

30 A Pocket Guide for Scrum Teams

 actual consumption. He also wrote several books about
 the system, laying out the principles of Lean
 Manufacturing and Kanban. From here, both the
 approaches grow in popularity in the manufacturing
 sector in Japan and abroad.
 The system’s goal is to refrain from producing a surplus.
 It achieves that by using cards and a board to visualise
 the workflow (Kanban is a Japanese word that means a
 “visual sign or billboard”). This gives everyone involved
 maximum insight into the process and helps managers
 address surplus/shortage in real time.
 In 2004, David J. Anderson, a Lean thinker, explored the
 Kanban system and decided to apply it to software
 development. The approach was refined over the next
 few years until he formulated the Kanban Method .
 Soon, the Kanban Method started to catch the attention
 of Agile teams. The method was a natural fit for them
 with its focus on making incremental changes and
 increasing delivery speed.
 The Kanban method also uses the notion of "pull" over
 "push," meaning that workers pull in work according to
 their capacity, as opposed to work being assigned to
 them from the top regardless of their capacity.
 Some of the key practises of Kanban are: visualise the
 workflow, limit work in progress, manage the flow, make
 policies explicit, and implement feedback loops.
 Kanban is often considered an Agile method, but it is not
 a management framework such as Scrum, it is a visual
 system for managing work as it moves through a
 process. Kanban is rather an alternative path to agility,
 it applies both Agile and Lean principles, and it can be

311.4 - Agile frameworks

https://getnave.com/blog/what-is-kanban-methodology/

 applied on top of any process or methodology to apply
 gradual improvements, whether you are already using
 Agile methods or more traditional ones.
 Moreover, Kanban seems to be better suited for teams
 that have a lot of unplanned work coming up such as
 support issues, emergency fixes, and urgent feature
 requests because it is optimised for flexibility.

32 A Pocket Guide for Scrum Teams

 Part II

 Scrum Roles and Rules

34

 Chapter 5

 Origins of Scrum

 There was a time when “scrum” was only a rugby
 football term. A scrum (short for scrummage) is a
 method of restarting play in rugby football and involves
 eight players from each team tightly huddling as they
 compete to win the possession of the ball.
 This form of collaboration inspired the Scrum method in
 business. Indeed, in 1986, two Japanese business
 experts introduced the term in the context of product
 development. Hirotaka Takeuchi and Ikujiro Nonaka
 published the article, "The New New Product
 Development Game" (the double “New” is indeed part of
 the title) in the Harvard Business Review. Their research
 showed that outstanding performance is achieved when

https://en.wikipedia.org/wiki/Rugby_football

 teams are small and self-organising units of people and
 when such teams are fed with (challenging) objectives,
 not with executable tasks. Teams can only achieve
 greatness when given room to devise their own tactics
 to best head towards shared objectives.
 The applicability of those concepts was subsequently
 extended to the software development industry by Ken
 Schwaber and Jeff Sutherland who introduced their own
 adaptation of Scrum, during the object-oriented
 conference OOPSLA in 1995 , to counter the
 established waterfall style project management
 processes.
 They have been collaborating since that time to
 introduce ever greater clarity and maturity to the Scrum
 approach, and in 2010, they published their first version
 of the Scrum Guide, as an attempt to help practitioners
 understand the rules of the game.
 In July 2011, the two authors add ed an ‘end note’ to the
 guide, offering a hint to what they are really striving for:

 “Scrum is free and offered in this guide. Scrum’s roles,
 artifacts, events, and rules are immutable and although
 implementing only parts of Scrum is possible, the result
 is not Scrum. Scrum exists only in its entirety and
 functions well as a container for other techniques,
 methodologies, and practises.” (Source: Scrum Guide
 July 2011)

 Ever since its first publication in 1995 up to now, Scrum
 has been adopted by a vast amount of software

36 A Pocket Guide for Scrum Teams

https://www.sigplan.org/Conferences/OOPSLA/

 development companies around the world. It is the most
 applied framework for agile software development.
 The framework, however, has also been successfully
 applied in other domains, e.g. manufacturing,
 operations, education, marketing, finance, etc.

2.5 - Origins of Scrum 37

38

 Chapter 6

 Scrum Pillars and Values

 Scrum’s roots lie in empiricism which is the idea that
 knowledge comes from experience.
 Empirical approach means working in a fact-based,
 experience-based, and evidence-based manner, and in
 particular, progress is based on observations of reality.
 Engineers typically call this feedback, which is
 information that can be used immediately to correct a
 course of action when needed.
 The three pillars of Scrum that uphold every
 implementation of empirical process control are:
 Transparency, Inspection, and Adaptation.

 ● Transparency: All people involved are
 transparent in their day-to-day dealings with
 others and they all trust each other. This
 promotes an easy and transparent flow of
 information throughout the organisation and
 creates an open work culture. Everyone strives
 and collectively collaborates for the common
 organisational objective.

 ● Inspection: The inspection can be done for the
 product, processes, people aspects, and
 practises with the purpose to identify whether the
 path the team has taken will indeed result in
 achieving the goals established.

 ● Adaptation: Adaptation in this context is about
 continuous improvement. Based on the results of
 the inspection, the team has the ability to adapt
 and might choose to modify its own behaviours
 to more closely meet the established goals, or
 perhaps to use empirical evidence to pick better
 goals.

 The Scrum framework is also based upon 5 core values:
 commitment, focus, openness, respect, and courage.
 The Scrum values are more than words or abstract
 ideas. If they do not lead to concrete changes in
 behaviour, the team may as well not have them.
 Successful Scrum depends on the entire team
 embodying the core values because Scrum is not only
 about delivering quality work, it is about creating a great
 place to work, a place where people can take pride in
 their job and themselves. What follows is a short

40 A Pocket Guide for Scrum Teams

 description of each Scrum value that will help teams
 incorporate them into their interactions.

 COMMITMENT

 Commitment here does not imply a contract, it implies
 instead a mindset or an attitude. The entire Scrum Team
 defines the team’s objectives, owns up to their
 commitments and sticks to them. Each team member
 thus commits to delivering on this promise. They also
 commit to assisting each other wherever required and
 working as a team to deliver the best possible product.
 This commitment, when combined with other values,
 helps the team drive towards maximising value.

 FOCUS
 Focus can help teams to get work done by encouraging
 teams to zoom in on blocked or undone work and
 collaborate to get it complete. Focus is essential for a
 team to prioritise work when there are multiple options.
 And there are always multiple options because there is
 always more work that could be done compared to the
 capacity of the team. And most importantly, focus is
 what enables a team to ignore distractions and move in
 a coordinated fashion to achieve their goal.

 OPENNESS
 Openness is extremely important to succeed in Scrum
 and it is also closely related to one of the three core
 pillars: transparency. The Scrum team members should

412.6 - Scrum pillars and values

 be open with each other and utilise information radiators
 as much as possible. The team should also be open
 about the work they are doing, about their progress,
 able to admit when they are wrong and open to honest
 feedback about the product, learning how to build better
 products, how to interact with each other better, and
 learning new ways of working.

 RESPECT

 Respect is completely fundamental to not just Scrum but
 any form of collaborative team-based work. Members on
 the team need to respect each other as people, respect
 each other’s differences and respect that they won’t
 always agree on methods but everyone is doing their
 best to reach the common goal of building a wonderful
 and successful product. Moreover, the overall
 organisation needs to respect Scrum, respect the team
 and respect the pillars of transparency, inspection and
 adaptation.

 COURAGE

 Courage is an interesting value, and enormously
 important. Courage is essential to transparency and
 safety. The team must have the courage to admit
 mistakes, otherwise they can never learn from their
 experiments. They also must have the courage to admit
 they are going down a wrong path and to change
 direction. For Scrum to really work, teams need to be
 empowered, they need to manage their own work, and

42 A Pocket Guide for Scrum Teams

 not be micromanaged . If all those things hold true, then
 the team needs the courage to accept this responsibility
 and forge their own path.

 When applied properly, the pillars and values help
 nurture and protect Scrum and give it its best chance of
 success. When ignored, Scrum will likely become a
 mechanical system of attempting to improve
 “productivity”, with little or no chance of succeeding.

432.6 - Scrum pillars and values

https://www.extremeuncertainty.com/myths-agile-agile-just-micromanagement/

44

 Chapter 7

 The Game of Scrum

 The goal of Scrum is to help people, teams and
 organisations generate value through adaptive solutions
 for complex problems, as described in the Scrum Guide.
 The various roles of the Scrum team and Scrum events
 help the team break down large projects into
 manageable steps to optimise predictability and control
 risk.

 Players and accountabilities
 Scrum organises its players into Scrum Teams. Scrum
 Teams are cross-functional, meaning the members have
 all the skills necessary to create value each Sprint. They

https://nira.com/scrum-team/
https://nira.com/scrum-meeting/

 are also self-managing, meaning they internally decide
 who does what, when, and how.
 The Scrum Team is responsible for all product-related
 activities from stakeholder collaboration, verification,
 maintenance, operation, experimentation, research and
 development, and anything else that might be required.
 They are structured and empowered by the organisation
 to manage their own work.
 A Scrum Team consists of three roles, where each role
 complements the other roles is accountability, thereby
 turning collaboration into the key to success.

 The Product Owner
 The Product Owner is a one-person player role who has
 a clear view on the goals of the project, customer,
 market and organisation. The Product Owner is
 constantly working towards aligning the work with the
 product vision that captures why the product is being
 built, is responsible for defining the work and then
 prioritising those tasks. They communicate this to the
 scrum team and guide them through the project. It is
 important that the PO actively engages with the other
 players of the team regularly and repeatedly.
 Rather than merely defining all the work at the start with
 a scope statement, like a traditional project manager,
 the Product Owner will review and reprioritize with
 feedback as needs change.

 The Scrum Master

46 A Pocket Guide for Scrum Teams

 As the name implies, the Scrum Master, a one-person
 player role, protects the Scrum process. Since they’re
 experts in Scrum and know how it should be applied,
 they are vigilant that the Product Owner and Developers
 are working within the Scrum framework. They are not
 merely Scrum police, but Scrum teachers who will coach
 team members on how to most effectively use the
 framework.
 But the Scrum Master also provides a guiding light to
 lead the project to success. In a sense, they are the
 protector of the team in that they will make sure that
 everyone on the project can focus without distractions.
 That includes distractions from an overreaching Product
 Owner, and organisational or internal distractions, too.
 Though some might see this as a project manager by a
 different name, it is not. Project managers manage the
 work of the project team members, whereas a Scrum
 Master guides his team but lets them work
 autonomously.

 The Developers
 The Developers are the heart of the Scrum Team, as
 they’re the ones responsible for doing the actual project
 work. Each member of the team has a skill that, together
 with the other team members, combines to tackle all the
 needs of executing the project. The Product Owner sets
 the priorities, and the work is guided by the Scrum
 process and monitored by the Scrum Master, but all

472.7 - The game of Scrum

 other responsibilities are laid at the feet of the
 Developers. That autonomy is the very core of the
 process. What comes from this approach is strong team
 bonds and a positive working environment where people
 feel empowered on the job. While this is not entirely
 alien to traditional project management, waterfall teams,
 for example, are managed by a project manager, not
 self-managed.

 Time and events

 The time-boxed iterations in the game of Scrum are
 called Sprints. A new Sprint starts immediately after the
 conclusion of the previous Sprint. Within a Sprint, a
 planned amount of work has to be completed by the
 team and made ready for review. In a sense, one Sprint
 within Scrum could be a project in itself, with start and
 finish. The team works towards a Sprint goal , they plan,
 refine, build, deliver, and review.
 The Sprints can be as short as a few days and generally
 are no longer than 3 – 4 weeks.
 As a container event, the Sprint encapsulates the Scum
 events, every event is timeboxed and is an opportunity
 to help the team work efficiently and closely together,
 adapt to changing conditions and to improve their
 knowledge and become more effective in the future.
 The events are:

48 A Pocket Guide for Scrum Teams

https://www.visual-paradigm.com/scrum/write-sprint-goal/

 ● Sprint Planning
 ● Daily Scrum
 ● Sprint Review
 ● Sprint Retrospective

 Sprint Planning
 Every Sprint begins with the Sprint Planning. This
 ceremony helps to set up the entire team for the coming
 iteration, creating a smooth pathway for a successful
 Sprint. Sprint Planni ng requires the participation of all
 the scrum roles. It typically lasts for an hour or two.
 The Product Owner, who proposes how the product
 could increase its value and utility in the current Sprint,
 comes to the meeting with a prioritised list of the product
 backlog items, which is presented to the group.
 The whole Scrum Team then collaborates to define a
 Sprint Goal that communicates why the Sprint is
 valuable to stakeholders. The team selects the amount
 of work it considers feasible for the Sprint against the
 expectations of what it takes to make it releasable. The
 Product Owner also needs to be able to clarify any
 questions or assumptions that the Development Team
 has about the work.
 Through a series of discussions and negotiations, the
 team should ultimately create a sprint backlog that
 contains all items they are committing to complete at the
 end of the sprint. The selected work is a forecast that
 represents the insights that the team has at the time of
 selection. The team might look at the amount of work
 they have, on average, completed in past Sprints and

492.7 - The game of Scrum

https://www.projectmanager.com/blog/sprint-planning-101

 compare this to their capacity for the upcoming Sprint, to
 slightly increase the accuracy of the forecast.

 Daily Scrum
 To manage and follow up on its development work, the
 team holds a short daily meeting called the daily Scrum.
 The meeting is the team’s chance to get together, define
 a plan for the day’s work, assess progress towards
 achieving the Sprint Goal and identify any blockers to
 achieving the goal.
 The Daily Scrum is timeboxed to 15 minutes. Standing
 up is not compulsory. However, many teams find this a
 useful technique to keep the event short and to the
 point, which is why it’s also called daily standup.

 One of the principles from the Agile Manifesto — “At
 regular intervals, the team reflects on how to become
 more effective, then tunes and adjusts its behaviour
 accordingly.” — sums up the reason behind the next
 two events, the Sprint Review and the Sprint
 Retrospective. Both events take place at the end of the
 Sprint. The aim of Agile approaches is not necessary to
 get everything ‘perfect’ the first time around but to
 improve continuously. These events help make that
 possible.

 Sprint Review

50 A Pocket Guide for Scrum Teams

 As the Sprint progresses, an increment of the product
 emerges from the team’s collaborative work. At the end
 of the Sprint, the review allows the Scrum Team the
 opportunity to show the done increment to stakeholders
 (customers, management and anyone else considered
 relevant and interested). As well as inspecting working
 features produced during the Sprint, you are also after
 useful feedback that may help guide the work for future
 sprints. The team should feel empowered to show off
 the work they’ve been able to complete over the course
 of the sprint. It should not feel like they are on trial or
 defending the work they’ve done.

 Sprint Retrospective
 The final event in the Sprint is the Sprint Retrospective.
 This is when the Scrum Team inspects and reflects upon
 the process. The meeting covers all aspects of the work,
 i.e. technology, social aspects, the Scrum process,
 development practises, product quality, etc. The meeting
 is basically about what went well (to provide a space for
 the team to congratulate themselves on a successful
 sprint, which is important for morale), and agree where
 there is room for improvements and what experiments
 might be usefully conducted in order to learn and build a
 better product.
 The ethos of Scrum dictates that no matter how good
 the Scrum team is, there will always be an opportunity to
 improve and the Sprint Retrospective gives the team a
 dedicated time in which to identify, discuss and plan this.
 The whole Scrum Team should take part. The event

512.7 - The game of Scrum

 should be a collaborative effort, just like the entire
 Scrum and Agile process.

 Artifacts

 In the game of Scrum, artifacts represent work or value.
 The dynamic nature of the projects makes evident the
 need for each team to maximise transparency of key
 information. Scrum artifacts are ways to describe the
 work that must be done, and they can be seen as
 nuggets of vital information for the scrum team at a
 particular point in time.
 There are three main scrum artifacts, according to the
 scrum guide. Each artifact contains a commitment to
 ensure it provides information that enhances
 transparency and focus against which progress can be
 measured:

 ● For the Product Backlog it is the Product Goal.
 ● For the Sprint Backlog it is the Sprint Goal.
 ● For the Increment it is the Definition of Done.

 These commitments exist to reinforce empiricism and
 the Scrum values for the Scrum Team and their
 stakeholders.

 Product Backlog
 One of the most important things before investing all of
 the resources to complete a project is to first find out

52 A Pocket Guide for Scrum Teams

 what features and functionalities the end-user wants
 from the product that the team is trying to develop.
 The tricky part is that the needs and requirements of the
 end-user never remain the same and the team has to
 keep track of all of that information to consult it regularly.
 The answer to the problem is the Product Backlog.
 The product backlog is a list of all the things that must
 be done to complete the whole project, and it evolves
 over time. For example, if there is a change in the
 business environment, marketing conditions or technical
 demands, the product backlog will reflect those
 changes. The product backlog is usually made up of
 three different types of items:

 ● User stories , which are high-level descriptions
 of a feature, told from the perspective of the
 end-user of the product.

 ● Bugs , which are problems that arise that the
 Product Owner wants fixed.

 ● Tasks , which describe the work the scrum team
 has to complete.

 The backlog grows as the product is being built. When
 changes are added they can include more detail,
 estimates or a change in priority.

 Commitment: Product Goal
 The Product Goal describes a future state of the product
 which can serve as a target for the Scrum Team to plan
 against. The Product Goal is in the Product Backlog and
 is the long-term objective for the Scrum Team. The rest

532.7 - The game of Scrum

 of the Product Backlog emerges to define “what” will
 fulfil the Product Goal.

 Refining the Product Backlog
 The product owner and the rest of the team are regularly
 working on refining the product backlog. This can occur
 at any time.
 Refining the product backlog includes activities such as
 reviewing the user stories of highest priority at the top of
 the backlog, and asking the product owner questions
 about them. This includes, if necessary, deleting user
 stories and then writing new ones. This is followed by
 reprioritizing the product backlog.
 When the items in the product backlog are chosen for
 the next iterative sprint, they are further refined to be
 developed during the sprint.

 Sprint Backlog
 The sprint backlog is the part of the product backlog that
 the team will be working on in their sprint, a sort of to-do
 list for the sprint in order to achieve the Sprint Goal.
 The sprint backlog is further broken down into tasks for
 the team to execute. Every item on the sprint backlog
 needs to get developed, tested and documented. The
 product owner helps the developers come up with a
 sprint backlog during their Sprint Planning.
 The sprint backlog is often represented as a task board,
 which is broken up into columns that represent the
 workflow. If there are items left unfinished by the end of

54 A Pocket Guide for Scrum Teams

 the sprint, they will be added back to the product
 backlog and may be addressed during the next sprint.

 Commitment: Sprint Goal
 The Sprint Goal is the single objective for the Sprint.
 Although the Sprint Goal is a commitment by the
 Developers, it provides flexibility in terms of the exact
 work needed to achieve it. The Sprint Goal also creates
 coherence and focus, encouraging the Scrum Team to
 work together rather than on separate initiatives.

 Refining the Sprint Backlog
 The sprint backlog, like the product backlog, is a living
 document and can be changed by the scrum team. As
 the Developers work during the Sprint, they keep the
 Sprint Goal in mind. Work is discussed regularly at the
 daily scrum and the sprint backlog is modified if the work
 turns out to be different than expected, the Developers
 collaborate with the Product Owner to negotiate the
 scope of the Sprint Backlog within the Sprint without
 affecting the Sprint Goal.

 Product Increment
 Finally, we get to the most important Scrum artifact that
 is the Product Increment. This is the product that is
 worked on and delivered to the end-user. In order to
 provide value, the Product Increment must be usable.
 An increment is basically a working,
 potentially-deliverable version of the product. Each
 sprint is potentially creating shippable product

552.7 - The game of Scrum

 increments, and so work cannot be considered part of
 an Increment unless it meets the Definition of Done.

 Commitment: Definition of Done
 For scrum teams, it’s really important to have a solid
 definition of what “done” means. They work in sprints,
 and need some way of deciding whether a work item is
 actually finished. The Definition of Done represents the
 formal definition of quality for all work items. Every
 Scrum team should set its own.
 A good Definition of Done builds a common
 understanding within the team about quality and
 completeness, provides a checklist of criteria to check
 work items against, and ensures that the increment
 shipped at the end of the spring meets the quality level
 that the team agreed upon.

 I have described the rules to playing the game of Scrum,
 but these rules leave room for different tactics to play
 the game. It’s important to understand that Scrum is not
 a methodology, it is a flexible framework that helps
 people, teams and organisations generate value through
 adaptive solutions for complex problems.

 In Part III, I describe a collection of good practises that
 teams can use to serve the purpose of Scrum and
 reinforce the Scrum values.

56 A Pocket Guide for Scrum Teams

 Part III

 Collection of Practical
 Tips and Tricks

58

 Chapter 8

 Monitoring progress
 towards a goal

 Looking at the rules of Scrum, including the need for
 transparency, which is crucial to the process of
 inspection and adaptation, and self-organisation, it is
 clear why it is important to track progress.
 Self-correction is difficult to achieve without it.
 When using Scrum, we measure progress by what we
 have delivered and validated, not by how we are
 proceeding according to the predefined plan or how far
 we are into a particular phase or stage of development.

 Therefore, during the evolution of the Scrum framework
 towards more lightness, we observe the elimination of
 burn-down charts as mandatory.

 A sprint burn-down chart is a graphical representation
 that shows the progress the team is making and is a
 powerful tool for visualising the work remaining. The
 chart shows:

 ● The outstanding work (in the unit of measure
 chosen by the team, i.e. hours, story points,
 other) on the first vertical axis.

 ● Time, in days, along the horizontal axis.

 There is an ideal work remaining line, which is a straight
 line connecting the start point to the end point. At the
 start point, it shows the sum of the estimates for all the
 tasks that need to be completed. At the end point, the
 ideal line crosses the x-axis and shows there is no work

60 A Pocket Guide for Scrum Teams

 left to be done. This line is based on estimates and
 therefore not always accurate.
 Then there is the actual work remaining line that shows
 the actual work that remains in the project or iteration. At
 the beginning the actual work remaining and the ideal
 work remaining are the same, but as the project or
 iteration progresses the actual work line will fluctuate
 above and below the ideal work line. Each day a new
 point is added to this line until the project or iteration is
 done to make sure it’s as accurate as possible. If the
 actual work line is above the ideal work line, it means
 there is more work left than originally thought. In other
 words, the project might be behind schedule.
 The advantage of having a visual representation of an
 updated status report on the progress of the project is
 that it keeps everyone on the same page. Moreover, it
 keeps everyone involved and encourages the team to
 deal with issues before they become problems.
 But there are also a few limitations. For example, the
 burn-down doesn’t offer any indication of which work
 items have been completed. Therefore, a burn-down
 chart might show progress but not whether the team is
 working on the right thing. So, these charts are a way to
 show trends rather than whether the team is delivering
 the right product backlog items.
 Another issue with burn-down charts concerns the
 accuracy of the ideal work line. Whether the actual work
 line is above or below the ideal work line depends on
 the accuracy of the original estimates for the tasks.
 Therefore, if a team is overestimating requirements,
 progress will appear on track if not ahead of schedule.

613.8 - Monitoring progress towards a goal

 But if they are underestimating requirements, it will
 appear that they are behind schedule.

 Burn-down charts are still a great way to play the game
 and are suitable in many situations. Yet, they have been
 turned into a non mandatory practice. At the same time
 we still need the backlogs to exist and a visualisation of
 their progress being available, accessible and clear.
 The good news is that there are multiple different good
 practises for that, one may be as simple as a Scrum
 board.

 A Scrum board shows the team's work split across
 different stages of their workflow. It is made up of
 columns that teams use to identify categories that fit
 their workflow. These columns are typically labelled on
 top as “to do”, “work in progress (WIP)”, “to verify” or
 “test” and “done”. It’s best to keep the number of
 columns small. You want a board that is easy to use.
 Each work item moves from column to column, usually
 from left to right, and it is represented by a card that
 moves as it gets worked on and eventually completed.
 The Scrum board is a tool, but if you don’t know how to
 use it then it’s not going to be effective.
 Clear communication is the stepping stone to almost
 any successful venture. When working in a Scrum
 framework, the basic platform for communication is the
 Daily Scrum.
 In the next chapter I will describe a good practice to
 keep the attention on the work the team wants to deliver
 and have effective communication.

62 A Pocket Guide for Scrum Teams

 Chapter 9
 A better stand-up by

 walking the board

 The Daily Scrum (or stand-up) could be the only time in
 the day when the whole team is assembled with the
 Product Owner, therefore it is the perfect opportunity to
 review progress and set goals for the day. However, this
 ceremony must be fast and efficient to ensure there is
 plenty of day left to put the planning into action, so it is
 necessary to establish a set of rules to keep it fast
 paced without losing the details.
 For the stand-up meeting, teams commonly use a
 format which aims to be both quick and comprehensive:

 ● The team stands around the task board.
 ● Each team member, in turn, describes what they

 achieved yesterday, what they intend to achieve
 today, and what blockers they may be facing.

 ● Aim to keep the meeting short and less than 15
 minutes.

 Using this format, people are often more focused on
 being busy than actually progressing the work, so let's
 switch to a model where Work Items attend rather than
 people.

 What is a snapshot of the current project progress? The
 task board (or Scrum board)! So, instead of hearing
 each team member in turn, let's hear a summary of each
 task on the board.
 How do we decide what order to go through the tasks on
 the board? Walk the board from right to left!
 The goal of each story is to get it done; so what does
 this story need to jump to the next column?
 For example, a common question could be: “What
 needs to be done to move this story to QA? Do you
 need any help?”
 By asking these questions to move the project along,
 you’re creating a more organised workflow so your team
 can accomplish its goals in a step-by-step manner.
 This approach ensures work that is closest to
 completion, and has had the most time invested in it
 (therefore most valuable in terms of effort), is discussed
 first.

64 A Pocket Guide for Scrum Teams

 As each work item is covered, the board walker can ask
 the team members working on the story to report on
 progress and if there are any issues.
 The whole team can join the discussion if they can see
 any way to help progress.
 Walking the board also helps reduce the time it takes for
 work to get across the board and into production.
 Whenever a team member completes a task they can
 view the board and “walk” it in their head. When they get
 to a task they can help with, they can jump on it.
 For example a developer may notice that a release is
 ready and that they can arrange to deploy to production
 immediately rather than picking up a new task from the
 backlog.
 Another example might be a bug found on UAT that is
 holding up the next release. The developer can start
 fixing the bug immediately to get UAT back on track
 rather than picking up new work from the backlog.
 Obviously having a board is a prerequisite which not all
 teams will have. In that case, a person-by-person
 structure is more appropriate.
 Moreover, the difference in the process is subtle if only
 one person is working on that particular story, however if
 multiple people are actively working on the story you will
 see the difference. Changing to this different format will
 dramatically improve the speed and usefulness of the
 daily sync. It will shift the focus to the story and promote
 coordination.

653.9 - A better stand-up by walking the board

66

 Chapter 10

 9 common Sprint Planning
 anti-patterns

 I have already mentioned earlier in the book that the
 work to be performed in the Sprint is planned at the
 Sprint Planning. This plan is created by the collaborative
 work of the entire Scrum Team. The Sprint Planning
 usually starts with the Product Owner describing the
 highest priority features to the team. Then, the
 Developers and the Product Owner adjust the discussed
 scope of the upcoming Sprint to the available capacity.
 During this meeting the Scrum Team also crafts a Sprint
 Goal. The Sprint Goal is an objective that will be met
 within the Sprint through the implementation of the

 Sprint Backlog and it provides guidance to the
 developers on why it is building the Increment.
 Having set the Sprint Goal and selected the Product
 Backlog Items for the Sprint, the developers usually start
 by designing the system and the work needed to convert
 the Product Backlog into a working product Increment.
 By the end of the Sprint Planning, the developers should
 be able to explain to the Product Owner and Scrum
 Master how they intend to work as a self-organising
 team to accomplish the Sprint Goal and create the
 anticipated Increment. After defining the context, let's
 consider 9 Sprint Planning anti-patterns in detail.

 Sprint Planning Anti-Patterns of the Scrum Team

 ● The Scrum Team has irregular Sprint lengths.
 This happens when the Sprint length is adapted
 to the size of the tasks or the Sprint Goal.
 Instead of changing the Sprint length to
 accommodate the Sprint Goal, the Scrum Team
 should invest more effort into sizing tasks in the
 right way.

 ● The Scrum Team takes on Product Backlog
 Items that do not meet the Definition of Ready. It
 could be that the Scrum Team has not created at
 all a Definition of Ready that Product Backlog
 Items need to match before becoming selectable
 for a Sprint. A simple checklist, that a user story
 must meet before being accepted into an
 upcoming iteration, is enough to increase the

68 A Pocket Guide for Scrum Teams

 quality of user stories and the general way of
 working as a team.

 ● The Sprint commitment is not a Scrum Team
 decision. This could happen when just one of the
 developers, the tech lead for example,
 represents the rest of developers in the meeting.
 According to the Scrum Guide, the whole Scrum
 Team needs to participate and collaborate,
 otherwise Scrum values will suffer.

 Sprint Planning Anti-Patterns of the Developers

 ● The Developers are not forecasting future
 velocity by combining recent velocity with the
 team's capacity for that Sprint, therefore they
 may take on too many tasks. The team should
 instead take into account public holidays, Scrum
 ceremonies and other meetings, new team
 members and team members quitting, just to
 name a few examples. (If you don’t have the
 concept of velocity, you can look at chapter
 “metrics”).

 ● The Developers are not demanding any capacity
 to address technical debts and bugs. In case the
 Product Owner ignores this practice and the
 developers accept this violation, future product
 delivery capability will decrease.

 ● The Developers do not work collaboratively on a
 plan to deliver on its commitment. In some cases

693.10 - Nine common Sprint Planning anti-patterns

 the senior developer assigns tasks to the
 individual members who they feel should
 complete the work. Rather than pushing tasks to
 individuals, team members should be allowed to
 pull tasks into their in-progress work, this
 improves communication and skills transfer.

 Sprint Planning Anti-Patterns of the Product Owner

 ● The Product Owner is absent. In Scrum, the
 Product Owner is part of the team and
 responsible for driving the value of the product
 for the customer through the work of the
 developers, therefore it is important that the
 Product Owner actively works with the team
 throughout the entire Sprint to answer questions
 and avoid misunderstandings and rework.

 ● No Sprint goal is defined. If the Sprint backlog
 appears a random assortment of tasks, it may be
 a signal of a weak Product Owner who listens
 too much to stakeholders instead of prioritising
 the product backlog appropriately. According to
 the Scrum Guide, the Product Owner is the sole
 person responsible for managing the Product
 Backlog and this includes ordering the items in
 the Product Backlog to best achieve goals and
 missions. No one can force the developers to
 work from a different set of requirements.

 ● The Product Owner tries to include some
 last-minute Product Backlog Items that are not

70 A Pocket Guide for Scrum Teams

 ready yet. It is true that only the Product Owner
 can make such kinds of changes to ensure that
 the developers are working only on the most
 valuable tasks at any given time. However, if the
 Scrum Team is practising Product Backlog
 refinement sessions regularly, these occurrences
 should be a rare exception. In case those
 episodes happen frequently, it indicates that the
 Product Owner needs help with ordering the
 Product backlog and team communication.

 Anti-patterns in Scrum are habits that are frequently
 exhibited but overall ineffective or maybe even harmful,
 so it is important to recognize and eliminate such
 behaviour.

713.10 - Nine common Sprint Planning anti-patterns

72

 Chapter 11

 Sailboat retrospective

 As described in the Scrum Guide, the Sprint
 Retrospective is the ceremony that occurs after the
 Sprint Review and prior to the next Sprint Planning.
 It is an opportunity for the Scrum Team to inspect itself
 and create a plan for improvements to be enacted
 during the next Sprint.
 If done well, this ceremony can highlight opportunities
 for change and generate meaningful process
 improvements.
 If done poorly, it can turn into a blame game, without
 suggestions to make things better, so it’s important to

 have a skilled facilitator to assure that retrospectives
 become effective.

 What is great about this ceremony is that it happens
 right as a Sprint closes, meaning fresh ideas are usually
 top of mind and able to be teased out by the whole
 team.
 There are several great retrospective techniques in the
 Agile community, the one I want to describe today is
 called Sailboat Retrospective as it uses a sailboat as a
 metaphor for the team.
 The idea is that the team is on a sailboat, heading
 towards their goal while dealing with winds and rocks
 along the way.
 Winds help propel the boat forward, but obstacles such
 as rocks and stubborn anchors represent the risks that
 the team might encounter and that could slow them
 down or even stop them from getting to where they need
 to be.
 I will describe how to facilitate it step by step and you
 can try with your team when it is appropriate.

 First, set the stage. The facilitator draws a large picture
 of a sailboat floating in the water, with about half of the
 space above and half below the water/boat, then adds
 anchors, wind, rocks and an island.
 You then explain that you are going to use the sailboat
 as a visual metaphor for the team. Moreover the
 facilitator explains that, on a sailboat, there are things
 that slow it down (anchors), and things that propel it
 forward (wind).

74 A Pocket Guide for Scrum Teams

 One variation you could apply is that the facilitator could
 let the team draw the picture of the boat. It helps to act
 as an icebreaker and get all of the group participating
 and on the boat.

 Now add goals. The facilitator asks the team to write
 down what their vision is, what they want to achieve,
 and what is their goal (this is represented by the island).
 Examples can be: the best development environment
 they can imagine, an effective team who can take pride
 in their work, filled with happy customers, opportunity for
 learning and growth.

 After that, gather data. The facilitator then asks the team
 to think of what is anchoring the team down and what is
 propelling it forward, and to start writing one
 anchor/wind per sticky note. Sometimes people will be
 unsure if they should gather a bunch of stickies and then
 come up, or just bring them up as soon as they have
 one. I encourage the latter.
 As a facilitator, just keep an eye out for the energy in the
 room - you may need to prompt someone to go ahead
 and put their items on the board. When the energy starts
 to die down a bit, give people a fair warning that we'll
 wrap this part up in a moment.

 Now Generate insights. The facilitator asks the team to
 come up to the board and group sticky notes that seem
 related somehow. As they do it, the team is asked to
 read the sticky notes out loud.

753.11 - Sailboat retrospective

 This part is a bit of a self-organising activity, it may need
 a bit of facilitation to make sure that people are getting
 some value out of the grouping and that one person's
 opinion isn't dominating when creating the groups.
 The key here is engaging group discussions, awareness
 and consensus on what the sail/anchor is and how it
 impacts the team.

 Finally plan the next steps. Remember to celebrate
 success and plan action items for current and future
 obstacles that have been identified during the above
 brainstorming.
 As a decision making method, the facilitator can ask
 team members to "dot vote" for the group or individual
 sticky notes they think should be worked on.
 Total up the sticky/group with the most dots, and move
 into some root cause analysis and proposed changes to
 make!
 I typically give everyone three votes, and they are
 allowed to use them however they please: place all
 votes on one sticky/group, distribute them around, or
 even don't use one.

 With this chapter I conclude my practical suggestions
 about how to facilitate three of the main Scrum events
 and we start exploring new concepts not included in the
 Scrum Guide. We start with User Stories and Story
 Points.

76 A Pocket Guide for Scrum Teams

 Chapter 12

 User Stories and Story Points

 I have already mentioned User Stories, earlier in the
 book, and described them as one of the types of items
 we can have in the Product Backlog. Now we look into
 them in detail.
 In Agile, a User Story is a short, informal, plain language
 description of what a user wants to do within a software
 product to gain something they find valuable.
 They typically follow a simple template:
 As a <type of user>, I want <some goal> so that <some
 reason>.
 With User Stories you put users at the centre of the
 conversation around what to add to or change in a
 software product.

 We could say they are the expression of the first
 principle behind the Agile Manifesto : Our highest priority
 is to satisfy the customer through early and continuous
 delivery of valuable software.
 Moreover, with User Stories you give developers the
 context and the why of what they’re creating. Doing so
 helps them understand how they’re providing value for
 the business and to keep the user/customer top of mind.

 User stories are often written on index cards or sticky
 notes, and arranged on walls or tables to facilitate
 planning and discussion. As such, they strongly shift the
 focus from writing about features to discussing them. In
 fact, these discussions are more important than
 whatever text is written.
 Anyone can write user stories. It is the Product Owner's
 responsibility to make sure a Product Backlog of Agile
 User Stories exists, but that doesn’t mean that the
 Product Owner is the one who writes them. Over the
 course of a good Agile project, you should expect to
 have user stories written by each team member.
 Also, note that who writes a User Story is far less
 important than who is involved in the discussions of it.
 While a Product Backlog can be thought of as a
 replacement for the requirements document of a
 traditional project, it is important to remember that the
 written part of an Agile User Story is incomplete until the
 discussions about that story occur.
 During discussions, details can be added to User
 Stories by adding “conditions of satisfaction”. They are
 Acceptance Criteria that clarify the desired behaviour.

78 A Pocket Guide for Scrum Teams

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
https://www.digite.com/resources/agile-manifesto-infographic/

 In other words, they are a high-level acceptance test
 that will be true after the Agile User Story is complete.
 The concise nature and user-focus of User Stories also
 helps in separating who deals with what you’ll make
 (customer or product manager) and who deals with how
 you’ll make it (developers).
 And finally, because User Stories are small
 self-sustained units of work, the team will enjoy lots of
 small wins as they complete one after the other. That’s
 good for building momentum.

 During discussions, estimates can be added to User
 Stories as well.
 With traditional estimation techniques we measure the
 expected effort of a work item in hours, or days. With the
 Agile approach, we use relative estimates about the
 effort it might take to complete each item in the backlog,
 and we do this by using Story Points.
 Story Points are a unit of measure for expressing an
 estimate of the overall effort that will be required to fully
 implement a Product Backlog item or any other piece of
 work.
 When we estimate with Story Points, we assign a point
 value to each item. The raw values we assign are
 unimportant. What matters are the relative values. For
 example, an item that is assigned two Story Points is
 expected to be twice the effort as an item estimated as
 one point.
 Instead of assigning 1, 2 and 3, that team could instead
 have assigned 100, 200 and 300. Or 1 million, 2 million

793.12 - User stories and story points

 and 3 million. It is the ratios that matter, not the actual
 numbers.
 It is important to understand that Story Points are a
 relative abstract measurement of the effort to do
 something. Effort is time, it is the number of time units it
 will take to do some work, it is how much time you need
 to complete the work, but Story Points cannot be time as
 we used before. Story Point estimation includes the
 following main components:

 ● Amount of work: if there is more to do of
 something, the estimate of effort should be
 larger.

 ● Repetition: this component is determined by how
 familiar the team member is with the feature and
 how monotonous certain tasks are within
 development.

 ● Complexity: This component is determined by
 how difficult the feature is to develop. If it is more
 complex, it will take more time. Moreover, there
 is more chance the developer makes a mistake
 and has to back up and correct it.

 ● Risk: The risk of a particular item includes vague
 demands, or dependence on a third party, for
 example. If a team is asked to estimate a work
 item and the stakeholder asking for it is unclear
 about what will be needed, that uncertainty
 should be reflected in the estimate. If
 implementing a feature involves changing a
 particular piece of old, brittle code that has no

80 A Pocket Guide for Scrum Teams

 automated tests in place, that risk should be
 reflected in the estimate too.

 By incorporating the aspects above, teams can more
 accurately plan Sprints, include cushion for uncertainty,
 better estimate issues, and avoid leaning too heavily on
 time commitments.
 When estimating with Story Points, most teams use a
 predefined set of values that doesn’t include every
 possible number. For example, teams commonly use
 powers of two (1, 2, 4, 8, 16,...) with each number
 doubling the preceding, or a Fibonacci sequence (1, 2,
 3, 5, 8, 13, …) with each number the sum of the two
 preceding numbers.
 By intentionally leaving some numbers out of the set of
 acceptable estimates, teams avoid bogging down in
 discussions of, for example, 25 versus 26. Indeed,
 estimating to that level of precision would be extremely
 difficult and time-consuming, and most likely not even
 possible.
 Mike Cohn, one of the contributors to the Scrum method
 and expert Scrum trainer, states that teams can
 estimate successfully with either set of values as each
 exhibits attributes of Weber’s Law.
 According to Weber’s Law, if we can distinguish a 60%
 difference in effort between two estimates, we can
 distinguish that same percentage difference between
 other estimates. The values in the Fibonacci sequence
 work well because they roughly correspond to Weber’s
 Law. After the “2” (which is 100% bigger than “1”), each
 number is about 60% larger than the preceding value.

813.12 - User stories and story points

 The concept of Story Points is simple yet difficult to
 apply. Almost every Scrum team uses them, but they are
 not part of the official Scrum Guide. Because of this,
 people have different opinions on how you should use
 them. Being aware of mistakes that can be made when
 using Story Points helps to apply them the right way.
 This is what we are going to explore in the next chapter.
 Later in the book, I will also describe the most common
 estimation techniques using Story Points.

82 A Pocket Guide for Scrum Teams

 Chapter 13

 Common mistakes when using
 story points

 Story Points are widely misunderstood and misused.
 Based on my experience, the main challenges with
 estimating in Story Points Scrum teams encounter are:

 ● Equating story points to time,
 ● Averaging Story Points,
 ● Story Pointing unfinished issues again.

 I would like to start with some suggestions on how to
 overcome those challenges, starting from that natural

 inclination people have to link Story Points to units of
 time.
 We already learnt, in the previous chapter, that Story
 Points are abstract. Defining a Story Point as 6 hours of
 work, it is the worst thing you can do with story points as
 you end up estimating a task differently according to
 who is the person who develops it, but the number of
 points assigned shouldn’t depend on who did the work.
 Estimates should speak relatively. The key is to
 compare items.
 I will try to explain the concept with an example. Two
 developers try to estimate a work item in hours, but one
 is faster and another one is slower, so they have
 different opinions. They will never agree on a number as
 each estimate, 10 or 20 hours, is right only for that
 individual. What they can do, instead, is to compare that
 item with another one and they will both agree that this
 item will take twice or 3 times as long as the other item.
 If your team is not doing it, you might be still estimating
 in days and just calling them points.
 The whole point is that team members with different skill
 sets and abilities can agree on the effort to do
 something and estimate with a common scale.
 Another common mistake I have encountered is that
 teams average Story Points. When, in an estimating
 session, half of the team estimates a work item at 3
 Story Points and the other half at 5 Story Points, it is
 easy to resolve the discussion by just putting 4 Story
 Points as the estimate.
 The reason why I would suggest teams not to do this is
 that it attempts to provide a false sense of accuracy. The

84 A Pocket Guide for Scrum Teams

 point is not to be 100% accurate. The point is to be
 accurate enough to plan ahead of time. Plus, you may
 lose a valuable discussion by averaging. Maybe 5 Story
 Points was a better estimate. And I will add more on this
 last point in the next chapters when we explore Agile
 estimation techniques.
 Lastly, I would like to add that when moving an
 unfinished work item to the next Sprint, it is not
 necessary to re-estimate. The old estimate may not
 reflect the remaining effort to complete the work, but that
 is not any problem. As a result of Sprint Planning, the
 team will know all necessary tasks to complete the work
 item. So the next Sprint, the team will know how much
 effort is still necessary to complete the work. And the
 Story Points for that item will be part of the next velocity.
 To help solve these problems, when they occur, there
 are a few things a SM can do immediately.
 The SM can fully reset the team’s understanding about
 story points and use questions to reinforce the relative
 nature of estimates.
 When the team is very close to agreeing on the
 estimate, the SM can ask them to compare the item they
 are estimating to another item. Mainly the Scrum Master
 reminds them that this is a relative estimate, but does
 this by asking questions rather than just telling.
 This is a coaching technique, when you ask a question,
 you ask a person to engage and work with you to solve
 the problem.
 A technique called triangulating can help a lot as well.
 When triangulating, you compare one item the team is

853.13 - Common mistakes when using sotry points

 estimating to 2 other items, ideally one bigger and one
 smaller.
 The SM might still hear the team is estimating while
 considering hours. The developers may say: “This might
 be 12 hours work so 2 story points” . In that case, the SM
 can say: ”OK, 2 points means this is very similar to this
 other item and it is a little smaller than this other one” ,
 and ask the team to confirm that those two comparisons
 are right.
 Misunderstanding of the meaning of story points will
 cause people to spend 4 times the amount of time
 recommended to estimate and they become frustrated.
 Following the advice above, there will be fewer
 disagreements about the size of an item, because
 people will not think about how long it will take to finish
 and they can estimate items together even if they have
 different levels of expertise.

86 A Pocket Guide for Scrum Teams

 Chapter 14

 I.N.V.E.S.T. in good stories

 I will start with listing a few common mistakes teams
 make when working with User Stories and then I will
 describe the characteristics of a good User Story.
 Some examples of what not to do with User Stories are:

 ● Starting from a requirements document created
 in a non-Agile way and ending up with contrived
 stories.

 ● Explaining the "how" and not the "why". The
 story can easily become a way of simply
 describing a feature you want to be implemented
 rather than a story explaining a user's needs.
 The result is a User Story that is overly technical

 and focused on specifics, reading more like a
 description of the software than a story.

 ● Assigning a story without discussing it first.
 Having a conversation about the story with
 everyone concerned, before you start
 implementation, is essential to collaboratively
 add the details, the acceptance criteria, that’ll
 prevent misunderstanding and rework.

 In order to create good User Stories, my suggestion is to
 start by remembering to “invest” in good user stories.
 INVEST is an acronym by Bill Wake, back in 2003, to
 help us remember the characteristics of a good User
 Story. It encompasses the following concepts:

 ● Independent
 ● Negotiable
 ● Valuable
 ● Estimable
 ● Small
 ● Testable

 Let’s cover each of them with a simple explanation.

 Independent . You want user stories to be independent
 of each other so you can freely move them around your
 product backlog as priorities shift. When dependencies
 come into play it may not be possible to implement a
 valuable story without implementing other much less
 valuable stories.

88 A Pocket Guide for Scrum Teams

3.14 - I.N.V.E.S.T. in good stories 89

 Negotiable . A story is not a contract, it is an invitation to
 a conversation. Therefore, the story captures the
 essence of what is desired. The ultimate goal is to meet
 customer needs, not develop something to the letter of
 the user story. So the actual result needs to be the result
 of collaborative negotiation between the customer (or
 customer proxy like the Product Owner) and developers.

 Valuable . A good user story has value to the “user” in
 the user story. It also includes internal value which is
 useful for things which are normally called
 “non-functional requirements” or something similar.
 Without that value, there’s no point in putting any effort
 into the story. Finally, remember the “so that <value>”
 clause of the user story. It is there for a reason, it
 represents the exact value we are trying to deliver by
 completing the story.

 Estimable . A story has to be able to be estimated or
 sized so it can be properly prioritised. Key factors for
 estimation are domain knowledge and technical
 knowledge. When a story cannot be estimated, the team
 can gain more clarity, it may be necessary to do some
 research about the story first. Sometimes also splitting
 the story can help to estimate .You don’t need exact
 estimates, but when you can estimate a story it’s also
 more negotiable.

 Small . You want the effort to implement a user story to
 be small. but how small should they be? The answer
 depends on the team and the methodology being used.

 In general small enough to allow the team to complete
 all work to get the story to a “done” state within the
 iteration. Plus big stories are harder to estimate, and
 thus less negotiable.

 Testable . Stories should be testable in order to help
 determine completeness. I like to think that testable
 acceptance criteria can be written before implementing
 the story. Thinking this way encourages more
 collaboration up front and builds quality in. Writing
 criteria (that can be measured and tested, ideally
 automated) also makes a team more productive by
 avoiding rework as a result of misunderstandings.

 INVEST encourages good habits which eliminate some
 of the bigger problems of User Stories like
 dependencies, being too big, hard to test, etc.
 The Definition of Ready, which I will describe in next
 chapter, is very closely related to what makes a good
 User Story, and therefore to the INVEST concepts that I
 have just described.

90 A Pocket Guide for Scrum Teams

http://en.wikipedia.org/wiki/INVEST_%28mnemonic%29

 Chapter 15

 Definition of Ready

 We are already familiar with the Definition of Done and
 we appreciate its value in helping teams remain
 transparent in how they get work completed.
 A similar but less commonly used concept is that of a
 Definition of Ready. A Definition of Ready is used to
 determine whether work is ready to be started in the first
 place and whether a user story or product backlog item
 is ready to be accepted into the next iteration. The goal
 is to prevent problems before they have a chance to
 start. The DoR reduces the chances of a Sprint starting
 where team members immediately shake their heads at
 work items they do not sufficiently understand.

https://agility.im/frequent-agile-question/what-is-a-user-story/
https://agility.im/frequent-agile-question/what-is-a-backlog-item/
https://agility.im/frequent-agile-question/what-is-a-backlog-item/

 It is important that the team has a good discussion and
 agreement of what they need to do with a story in the
 product backlog before it can be added to a Sprint.
 Therefore, many teams define a template with a
 checklist format to start that discussion.
 Common items considered for a Definition of Ready are:

 ● Action . Does the team know what they need to
 do, and can they do it now? Is the item free from
 external dependencies?

 ● Refine . Has the item been through a process of
 refinement before sprint planning? Is there a
 common understanding amongst the team on
 what the item is and how it will be implemented?

 ● Value . What is the business value of the item?
 What is the value to the end user? Is the value
 clear to everyone on the team?

 ● Estimate . Has the item been estimated by the
 team? And, is the item agreed to be of a size
 that the team is comfortable can be completed
 within an iteration?

 ● Acceptance Criteria . Has the item got clear
 conditions of satisfaction?

 ● Demo . Does the team understand how they
 might demo the item or discuss it in the sprint
 review once complete?

 As with the Definition of Done, the Definition of Ready
 should be collaboratively created and agreed by the

92 A Pocket Guide for Scrum Teams

https://agility.im/frequent-agile-question/what-is-a-sprint-review/
https://agility.im/frequent-agile-question/what-is-a-sprint-review/

 whole team and be seen as a living document that
 grows with the team as they mature.
 To be clear, the recommended use of a definition of
 ready is as a guideline for the team to use to determine
 if stories are ready to be worked on. It should be used
 as a checklist of things to consider, rather than a
 stage-gate that has to be fully satisfied for every story.
 A stage-gate approach will hamper the team’s ability to
 be agile as it is, after all, another way of describing a
 waterfall process.
 Agile practitioners are usually aware that a user story is
 meant to represent an ongoing and evolving
 conversation with stakeholders, and not a fixed
 specification.
 Therefore, I would suggest always considering the
 context or situation for every story/item rather than
 blindly applying every aspect of the Definition of Ready
 to every item the team works on.

933.15 - Definition of Ready

94

 Chapter 16

 Agile Estimation

 In traditional software project management, estimates
 are based on the question “How long will it take?”
 To answer this question, traditional estimation uses
 methods that follow ‘bottom-up’ estimating. This means
 that teams inspect the smallest tasks at the bottom,
 estimate the hours or days required to complete them in
 order to determine the cost of each feature, and then
 use this information to develop a schedule for the
 project.
 When you are estimating Agile projects, you will start
 with a broad estimate for different parts of the project,
 and then continually refine as more information is
 available. It is called a top-down approach because we

 are not interested in the detail of the tasks, instead we
 are much more interested in quick-fire estimates of
 higher level features. Therefore, Agile estimates are
 based on the question “How big is it?”
 Indeed, Agile estimation is about evaluating the effort
 required to complete each work item listed in the
 backlog, which, in turn , can give Product Owners new
 insight and can support decisions about the p riority of an
 item or whether it can be promised to users in 3 months,
 and maybe even whether to do the work item at all.
 The main principles behind agile estimation are:

 ● allow discussion to derive more information
 about the items,

 ● create mutual understanding about the solutions,
 ● create team commitment on the work agreed

 upon
 ● strengthen team relationships by collaborating.

 The team members share responsibility and are
 collectively committed to the work of each iteration, so
 typically the features are estimated by the entire team.
 According to some studies on the accuracy of estimation
 of effort between individual and group, the estimates
 based on group discussions are more accurate than the
 individual estimates. Having everybody involved means
 that the combined expertise of the whole team can be
 utilised.
 After all, an estimation is nothing more than a well
 educated guess.
 When estimating, we use all the knowledge and
 experience at hand to make a guess about the amount

96 A Pocket Guide for Scrum Teams

3.16 - Agile estimation 97

 of effort it is going to take. So, instead of looking at
 every new work item separately, why not compare it to
 previously finished work items? It’s easier for humans to
 relate to similar items than to guess the actual size of
 things anyway. That’s why in Agile environments, all
 estimations are done in relative terms rather than
 absolute terms.
 In the next chapter we will explore 3 different techniques
 using relative estimates.

98

 Chapter 17

 Techniques for estimation

 In this chapter, I am going to run through three of the
 most used Agile estimation techniques.

 Planning Poker
 Planning Poker was invented by James Grenning, an
 experienced Agile coach and trainer, and later it was
 popularised by Mountain Goat Software's Mike Cohn in
 his book Agile Estimating and Planning. It is an agile
 estimating and planning technique that is based on
 consensus. Planning poker starts with the team
 members involved in the estimation process sitting

 together for the session. Each team member gets a set
 of numbered cards, usually based on the Fibonacci
 sequence. Then the Product Owner reads a user story
 or describes a feature to the team. The team members
 discuss the feature and ask the Product Owner
 questions if needed. When the members have finished
 their discussion, each member selects one poker card to
 represent the estimate. The cards are then revealed
 simultaneously.
 If all members selected the same value, that becomes
 the estimate. If not, the team discusses their estimates.
 The high and low estimators should especially share
 their reasons. After further discussion, each member
 reselects a poker card, and all cards are again revealed
 at the same time. The poker planning process is
 repeated until consensus is achieved.
 Being asked to justify estimates results in estimates that
 better compensate for missing information. This is
 important on an agile project because the user stories
 being estimated are often intentionally vague. Whereas
 sometimes the team members might decide that agile
 estimating of a particular item needs to be deferred until
 additional information can be acquired.
 The estimating session (which may be spread over
 multiple days) is used to create initial estimates useful in
 scoping or sizing the project. As product backlog items
 (usually in the form of user stories) will continue to be
 added throughout the project, most teams will find it
 helpful to conduct subsequent agile estimating and
 planning sessions once per iteration.

100 A Pocket Guide for Scrum Teams

 Teams estimating with Planning Poker consistently
 report that this technique leads to better estimates
 because it brings together multiple expert opinions.

 The Bucket System
 The Bucket System is a way to do estimation of large
 numbers of items with a small to medium sized group of
 people.
 The game is based on the idea that estimating is hard
 and it is extremely hard to estimate precisely. It’s good
 then to make estimating easier by not requiring teams to
 put exact values on every item they estimate.
 The group estimates the items by placing them in
 “buckets” and each bucket can hold estimates up to its
 size. The facilitator starts the session by creating
 multiple sections on a table called placement ‘buckets’,
 of the chosen scale (a team might choose to estimate
 using 1, 2, 4, 8 and 16, another team might use the
 Fibonacci sequence of 1, 2, 3, 5, 8 and 13). The PO
 comes to the session with a collection of work items that
 need to be estimated.
 The team chooses an item at random from the
 collection. Read it to the group. The group discusses its
 relative position on the scale. Once consensus has been
 reached, they put the item in the appropriate bucket.
 Then they choose a second item at random and, after
 discussion and consensus is reached, place it in the
 appropriate bucket. And they do the same for a third
 item.

1013.17 - Estimation techniques

 After that, there is a “divide and conquer” phase. All the
 remaining items are equally allocated to all the
 participants. Each participant places items in buckets
 that they believe the items should sit in, without
 discussion with other participants. If a participant has an
 item that they truly do not understand, it can be
 transferred to someone else.
 When they can't decide whether a particular product
 backlog item should be an 8 or a 13 (or a 3 and a 5),
 part of the answer can be found by thinking about water
 buckets.
 Suppose you have 10 litres of water you need to store.
 You also have an 8-litre bucket and a 13-litre bucket.
 Ten litres of water doesn’t fit in an 8-litre bucket, the
 water would overflow and spill out. So you would store
 the water in the 13-litre bucket. The goal is to find a
 number (a bucket) just large enough to hold the whole
 story.
 When all the items have been “thrown” into the buckets,
 Everyone quietly reviews the items on the scale. If a
 participant finds an item that they believe is out of place,
 they are welcome to bring it to the attention of the group.
 The group then discusses it until consensus is reached
 and places it in one of the buckets.
 This technique helps team members move away from
 the feeling that estimates need to be perfect and
 precise. It is also collaborative as everyone in a group
 participates roughly equally and the results are not
 traceable to individuals which encourages group
 accountability.

102 A Pocket Guide for Scrum Teams

 The Team Estimation game
 This technique was originally created by Steve Bockman
 and described in the book The Elements of Scrum.
 It is faster than the Planning Poker, has the same
 accuracy and is fun.
 With this technique, the team utilises people’s natural
 ability to compare things against each other. Rather than
 dealing with individual stories, they estimate a set of
 stories in the aggregate. Silent relative sizing needs to
 occur.
 The facilitator places the team’s story cards in a pile on
 the table, selects the top card from this pile and places it
 in the middle of the playing surface (or sticks it on a
 wall).
 After placing the first card, each team member plays in
 turn doing one of the following:

 ● Play the top card from the pile as described
 above and place it to the right if it requires more
 effort to be completed than the other(s), to the
 left if it requires less effort, or under another card
 if the user stories are of about the same effort.

 ● Move a card already on the playing surface,
 declaring disagreement about its relative size.

 ● Pass.

 During play, the players may talk about why cards are
 being moved or about what they think about the size of
 the stories. Other team members may ask clarifying

1033.17 - Estimation techniques

 questions, but they must not express their own opinions
 during another player’s turn.
 The goal is to get clarification and not to get too hung up
 on the exact sizes of the estimates.
 The first part of the play ends when there are no more
 cards in the pile and there is a general consensus on
 the ranking of the cards.
 In preparation for round two of the game, the facilitator
 produces a deck of Fibonacci cards. Each card in this
 deck has one of the Fibonacci numbers on it. The
 Fibonacci sequence reflects the general principle that
 risk increases geometrically in proportion to complexity.
 The team now works together to assign points to each
 stack to indicate the size (level of effort) of stories that
 are in that stack.
 Each team member plays in turn doing one of the
 following:

 ● Pick up a card with a number on it and place it
 on one of the columns.

 ● Use their turn to change a number assignment
 made by another team member.

 ● Pass.

 This continues until a consensus is reached. When
 everyone feels confident enough in the sizes to pass on
 their turn, round two is over.
 As a result of the Team Estimation Game, the team gets
 an estimated package of stories.
 When playing it on your team, note that you don’t have
 to start with a “1” as your smallest story size.

104 A Pocket Guide for Scrum Teams

 If a player thinks there may be future stories that will be
 significantly smaller than the smallest story that is
 currently on the playing surface (or on the wall),
 they may opt to start with the “2” or “3” above the first
 story instead of the one.
 This leaves room for future stories to be sized smaller
 than the smallest story in the current set.

 When estimating Agile projects, having everybody
 involved means that the combined expertise of the
 whole team can be utilised and they produce better
 estimates.
 But, it might happen that the team gets hung up trying to
 create perfect estimates, which is not ideal. In the next
 chapter I will describe how to avoid this situation.

1053.17 - Estimation techniques

106

 Chapter 18
 4 practical suggestions

 for better estimates

 When teams estimate well, they can do it quickly and
 accurately. Moreover, the organisation can comfortably
 base decisions on those estimates.
 Most teams I know want to do good work and have high
 standards, but it is important to avoid teams getting
 stuck in the pursuit of perfect estimates as this can
 damage relations with stakeholders and compromise
 quality.
 When there is an urgency to deliver results and deliver
 them on-time, often the stakeholders take estimates as

 guarantees and hold team members to every estimate
 they provide. If the team takes longer than what they
 estimated, the team gets in trouble.
 As a consequence, teams start padding estimates and
 that exacerbates the lack of trust between stakeholders
 and teams.
 Sometimes also higher estimates are not enough and
 the team finishes late anyway as, knowing that the
 estimates are too high, they wait too long to start the
 work and they fail to finish on-time.
 As a consequence of this, teams don’t want to estimate
 at all, or they become obsessed with perfect estimates,
 as it seems the only way to be right, and discuss each
 item to a tedious level of detail.
 All of this is caused by miscommunication about the
 meaning of an estimate.
 Fortunately we can solve these problems with a shared
 understanding about estimates, their accuracy, and what
 they are good for.
 I am going to describe four techniques that every team
 can try and that will help to uncover hidden assumptions
 and encourage communication both for people who
 want the answers and for those responsible for creating
 them.

 First thing to do is agreeing with the team which type of
 estimates they want to go for and share that choice with
 the stakeholders.
 Usually, teams estimating based on the worst case will
 give higher estimates (and might be right 99% times), on
 the contrary, teams estimating based on the best case

108 A Pocket Guide for Scrum Teams

 will give lower estimates (and might be right only 10% of
 times), and finally with a median estimate, roughly half
 time they will finish faster than estimated and half time it
 will take longer.
 Without a shared understanding on the type of estimate
 being given, not only the team will struggle to agree on
 an estimate and estimating takes longer than it should,
 but also it could happen that stakeholders think they are
 given the worst case estimate, so they think the
 estimates could be wrong in 1% of cases, instead the
 team is providing a median estimate which in 50% of
 cases is expected to take longer.
 The Scrum Master can and should help the team to
 agree on the type of estimate, then the SM should talk
 to stakeholders and tell them first which type of
 estimates the team chose and then remind them that
 estimates are just guesses and not guarantees.

 Even if stakeholders understand that the team is
 providing an estimate that might be wrong 50% of times
 they might still ask for some level of guarantee. In that
 case a second step for the teams is to add some margin
 of safety to their project estimate.
 If a project is made up of 10 items, with the median
 estimate 5 might take longer and 5 might take less, my
 suggestion for the team is don’t just sum up the 10
 estimates and tell the stakeholders the delivery date,
 instead sum the 10 estimates and add some safety
 margin and communicate that as the plan.

1093.18 - Four practical suggestions for better estimates

 The third challenge is that many teams have a tendency
 to underestimate and they need techniques to balance
 underestimating with overestimating. If that is the case,
 the technique I suggest is to try the bucket estimation
 with the Fibonacci sequence which reframes the
 question from ”what estimate to give to the item”, into
 “which bucket does this item belong in”.
 Each bucket can hold estimates up to its size. This way
 if the team thinks an item is 6 story points, that doesn’t
 fit in the 5 bucket, it would make the 5 point bucket
 overflow, so the item has to go into the 8 bucket. Using
 this technique, the team will have a slight tendency to
 round up and they are more likely to balance under and
 over estimates.
 My last suggestion is related to the scale to use when
 estimating. Product backlog items are usually big and
 the team struggles to choose between two estimates
 that are too close to one another. They cannot tell the
 difference between 42 or 43 story points even if they are
 good at estimates. A good choice could be the
 Fibonacci series, as in this sequence, for numbers
 above 3, each number is roughly ⅔ larger than the
 previous. And it might be a big enough difference to be
 discernible.
 Moreover, as the precision decreases with larger
 features, teams might find it useful to break the feature
 into smaller stories or tasks.
 In the next chapter we will explore a few simple
 techniques to split big stories.

110 A Pocket Guide for Scrum Teams

 Chapter 19

 S.P.I.D.R.

 We already know by now that a User Story describes a
 software feature from the end-user perspective. Indeed,
 in a User Story, you try to describe who the story is for,
 what is going to be delivered, and why it matters in the
 first place.
 Moreover, stories can and should be broken down into
 smaller chunks by the development team when it makes
 sense, the reason is that not only smaller stories are
 easier to understand and therefore easier to estimate,
 but also their smaller size makes them inherently less
 risky for a team to take on.

 However, when teams first start splitting stories, they’re
 often tempted to split them horizontally rather than
 vertically.

 This concept was first espoused by Bill Wake, in 2003.
 He says: A story needs to be valuable. We don't care
 about value to just anybody; it needs to be valuable to
 the customer. This is especially an issue when splitting
 stories. Think of a whole story as a multi-layer cake,
 e.g., a network layer, a persistence layer, a logic layer,
 and a presentation layer.
 When we split a story, we're serving up only part of that
 cake. We want to give the customer the essence of the
 whole cake, and the best way is to slice vertically
 through the layers. Developers often have an inclination
 to work on only one layer at a time (and get it "right");
 but a full database layer (for example) has little value to
 the customer if there's no presentation layer.

 It is true that many teams struggle to split large user
 stories into smaller stories in a useful way, but,
 fortunately, story splitting is a skill that can be learned in
 a relatively short time.
 There are now several techniques and tools that can be
 used to split user stories. I would like to introduce you to
 the simple and fast SPIDR method from Mike Cohn
 (Agile coach and co-founder of the Scrum Alliance).
 He summarises five techniques with which almost every
 large user story can be divided.

112 A Pocket Guide for Scrum Teams

 SPIKE

 If the subject on a User Story is not clear or too complex
 and needs extra research, it’s time for a Spike.

 A goal of a Spike can be gaining more information on
 the topic by doing research or it can be gaining
 experience on the subject by building a prototype,
 typically used for the evaluation and feasibility of new
 technologies.
 With the help of such newly acquired knowledge, a story
 can then be better understood and possibly split more
 easily with other SPIDR methods.

 PATH

 If there are several possible alternative paths (or
 scenarios) in a User Story, one option is to create
 separate User Stories for some of the paths.
 For example, let's take a User Story in which the shop
 owner wants to send the customer his new password by
 text message or email in case the customer forgets his
 password.
 You can split the User Story into two separate paths to
 recover the customer's password.
 It is not absolutely necessary to write a story for each
 individual path, just where it makes sense.

1133.19 - S.P.I.D.R.

 INTERFACE

 Interfaces in this context can be different devices, for
 example if you have a website and an app.
 It might be useful to split a User Story into separate
 stories for the different interfaces, you might change the
 website first, because of the probably larger target
 group, and after that the app.

 DATA

 If a User Story needs more than one source of data for
 all requested functionality, you can often start with only
 one source of data.
 For example, if you are building a website intended to
 attract tourists to a particular city, the first story could
 include information about the different museums.
 After that you can add hotels, public transport options,
 outdoor activities, etc.

 RULES

 Business rules or technological standards can be
 another splitting factor.
 Take the example of online purchase of items. There are
 often constraints that are for example based on
 business requirements of the respective shop, such as
 an online purchase limit of a maximum of 3 items per

114 A Pocket Guide for Scrum Teams

 basket (similarly to dry pasta and toilet rolls limit during
 coronavirus pandemic).
 With the first User Story it would be conceivable that the
 development team omit this restriction, allowing every
 user to buy as many items as they wish, not considering
 the purchase limit. The restriction could then be added
 in a second iteration step.
 Incremental delivery such as this means that initial
 stories are not immediately implemented completely, but
 instead are delivered in several smaller steps.
 Sometimes it makes sense to neglect technical
 specifications or business rules, if by doing so you are
 able to discuss the early results with the stakeholders.

 User Story splitting is not always easy at the beginning,
 but practice makes it perfect.

1153.19 - S.P.I.D.R.

116

 Chapter 20
 The Shu-Ha-Ri model and

 Scrum maturity

 Shu Ha Ri is a Japanese martial art concept that is used
 to describe the progression of training or learning. It is
 roughly translated to “first learn, then detach, and finally,
 transcend.”
 In recent years, it has been abstracted and applied to
 the cycle of learning in general.
 I got familiar with this concept while reading the book
 “Coaching Agile Teams” by Lyssa Adkins.
 In this chapter, I want to present this concept applied to
 Scrum teams and use it as a tool to help teams to
 identify in which stage they are.

 The team is at the Shu phase when they are new to
 Scrum or new to each other. At this stage it is not rare
 for the team to change or drop Agile practises and lose
 the intention behind them. In some cases they might
 mash up Scrum with something else so that their
 practises are not even clear to them. Therefore they
 need the Scrum Master to guide them to practice at
 Shu.
 In this beginning stage, the teams follow the teachings
 precisely. They concentrate on how to do the task,
 without worrying too much about the underlying theory.
 When a team is first learning something, a variety of
 ideas is not usually the most helpful place to start. If
 there are multiple variations on how to do a practice,
 they concentrate on just the one way their master
 teaches them.

 The team is at the Ha phase when they live by ideals in
 the Agile Manifesto. In all they do, they stand on the
 side of individuals and interactions, working software,
 customer collaboration, and responding to change. They
 have the basic practises working well and start
 producing new insights that let them improve each
 Sprint. They pause to consider the ramifications before
 they alter, drop, or add an Agile practice. At this point,
 with the basic practice working, teams start to learn the
 underlying principles and theory behind the technique.
 Once teams get the basics down, they move on to
 experimenting and looking to integrate new thoughts or
 ideas. They keep learning from the Scrum Master and
 integrate that learning into their practice. They need the

118 A Pocket Guide for Scrum Teams

 Scrum Master to coach them to a deeper expression of
 Agile.

 The team is at the Ri phase when they altered their
 practice of Scrum and did so consciously, keeping the
 values and the principles of Agile alive, their practice of
 Agile leads to progressively better and faster delivery
 and higher satisfaction. They took in the skills and
 mind-sets necessary to be truly self-monitoring and
 self-correcting and they are now not learning from
 others, but from their own practice. They create their
 own approaches and adapt what they have learned to
 their own particular circumstances. Eventually they will
 move beyond the specific practises and evolve their own
 way of doing things. At this stage, the Scrum Master
 needs to let them go.

 All the different levels require different coaching styles.
 The Scrum Master should understand in which stage the
 team is to help them to perform in a more efficient way.
 Below I summarise what the various coaching styles
 should be.
 At Shu stage the SM must teach the rules. The teams
 that are at this level have a basic knowledge of Agile
 values/principles/practises. They need to have someone
 to guide them.
 At the Ha stage, teams can come up with their solutions,
 they just need a coach to help them find different ways
 to achieve what they need. Teams have a good
 understanding of agile values/principles/practises, they
 start to interiorise them from their past experiences. The

1193.20 - The Shu-Ha-Ri model and Scrum maturity

 role of the SM works as a coach while they start to
 understand how they can use different approaches to
 achieve the same result.
 In the Ri stage, the team has fully internalised the
 values, principles, and practises. Everything runs quite
 well, the role of the SM works as an advisor.

 One important thing I would like to add is that each
 successive stage contains the others. For example, if a
 team is in “Ha”, but you want to introduce a new practice
 or idea, remember to use a teaching approach because
 the team is new to that practice so that they will be in
 Shu for that idea. This is important because most
 probably you will be changing coaching styles
 depending on the practice or idea that you want to feed
 into the team.

120 A Pocket Guide for Scrum Teams

 Chapter 21
 Metrics

 Many teams have an uneasy relationship with metrics.
 In the majority of cases it happens because they have
 the misfortune of being on a project where stats are
 used for comparison across teams and, in
 consequence, set one team against another. In other
 cases metrics are used to measure engineering output
 and pretend this translates into a teams’ productivity.
 Many agilists, in an effort to defy this trend, affirm that
 measurements should not be used at all, and that only
 the production of software itself should be considered
 the criterion for success.

 As the legendary engineer W. Edwards Deming wrote
 “without data, you’re just another person with an
 opinion”, I think, on a project where no data of any kind
 is tracked, it is tough to optimise something you don’t
 measure and it is hard to tell whether you are on track
 for release.

 When talking about metrics, I think the first question we
 should ask is: What are Agile Metrics for?
 Agile Metrics are meant to help teams better analyse
 and understand their workflow, discover shortcomings,
 and improve the development process, work quality,
 product being developed, predictability and health of the
 team.

 The second question I would ask is: Who are Agile
 Metrics for?
 Agile metrics are primarily a feedback loop for the team.
 Teams should regularly review agile metrics to tune and
 adjust their behaviour, they need to understand how
 they are doing and use the data to become more
 productive. Most of these metrics are supposed to be
 starting points for conversations, they have meaning
 because of the context around them, and the only
 people who have experienced and will understand that
 context are the people in the team.

 Now that we’ve covered the basics, it’s time to get into
 10 metrics I find useful for Agile teams.

122 A Pocket Guide for Scrum Teams

 I will start with metrics that relate to the pace of delivery,
 value and quality delivered, followed by metrics used to
 measure satisfaction.

 Velocity . It simply measures the amount of work that a
 team completes during a set amount of time, usually a
 Sprint or iteration. It is primarily used to encourage
 consistency and prevent burnout on the team.
 When calculating Velocity, remember that something
 half done, is not done at all.
 It is crucial to follow how your team’s Velocity changes
 over time, Velocity will most likely increase as teams
 eliminate bottlenecks, learn to work and communicate
 better, and inspect and adapt to their process. However,
 don’t expect constant linear improvement.
 As you track it, look also for any erratic moments. If
 these become the norm rather than the exception, help
 the team investigate the root cause, possibly during a
 retrospective.
 Moreover, Velocity can be extrapolated to longer time
 frames for release/quarterly planning as we will see in
 the next chapter.
 Be sure to focus on being accurate and not overly
 precise, and be careful not to compare Velocity across
 teams because story points and definition of done can
 vary between teams.
 This is one of the most misunderstood metrics. A team’s
 Velocity is unique to them, it simply cannot be compared
 to another team.

1233.21 - Metrics

 Cycle Time. It measures how long it takes something to
 get done from start to finish. It is a very simple metric
 that describes how work is flowing into and through a
 system.
 Cycle Time tells you how quickly your team can process
 a piece of work. You want it to be consistent and short,
 regardless of the kind of work being done.
 If your work items are User Stories and your sprints are
 two weeks, You want your Cycle Time to be under two
 weeks, well under.
 When Cycle Times are longer than a Sprint, teams are
 not completing work they committed to and this is not a
 good thing.
 Moreover, consistent Cycle Time means you can
 accurately predict when you will be able to deliver
 individual pieces of work, whether you are using
 continuous flow or sprint-like timeboxes.
 Cycle Time also gets you immediate feedback, as you
 can see the results of any changes right away.
 Indeed, when you adjust the system, Cycle Time will
 either increase or decrease right away, so in a short time
 you know if the experiment succeeded or failed.

 WIP (Work In Progress) . It measures the number of
 tasks that the team is currently working on.
 Lots of work in progress could mean the team is
 switching focus constantly and maybe working as a
 group of individuals rather than working as a team.
 It is really important to assess how, as a team, you could
 collaborate or help each other in moving a user-story out
 of the window.

124 A Pocket Guide for Scrum Teams

 In such cases, you might find useful limiting work in
 progress that is simply restricting the maximum amount
 of work items in the different stages of the workflow.
 Teams should agree on WIP limits and focus on helping
 members of the team who get blocked rather than
 starting new tasks while one of their team struggles.
 The “Stop starting, start finishing” philosophy is not
 limited to Lean and Kanban world, it is applicable in
 Scrum too.
 Moreover, WIP limits ensure that your team will keep an
 optimal work pace without exceeding its work capacity.

 Throughput . It represents the number of work items
 delivered in a given period of time, it could be measured
 monthly, quarterly, per release, iteration, and so on.
 The value in this metric is that it can be used to track the
 consistency of delivery from a team and organisational
 perspective.
 It can also be used to determine how much software can
 be delivered for a specific time frame.
 Indeed, empirical analysis of historical data can be used
 to forecast delivery performance. The more historical
 data available, the more accurate the projections are
 likely to be.
 It is important to remember that the Throughput strictly
 counts work items, it does not take into account the fact
 that they might be of different sizes.

 Sprint Burndown Chart . Before starting a Sprint, a
 team forecasts how many Story Points they can
 complete in its course.

1253.21 - Metrics

 The Sprint Burndown Chart visualises how many Story
 Points have been completed during the Sprint and how
 many remain, and helps forecast if the Sprint scope will
 be completed on time.
 This metric allows you to track closely the progress of a
 Sprint and it shows how agile your team really is.

 Committed vs. Completed . It is the percentage of story
 points completed during the Sprint divided by those
 committed at the planning meeting.
 It provides insight about the team’s ability to predict its
 capabilities.
 If the percentage is higher than 100%, it might mean
 that the team ran out of work during the Sprint and
 brought forward items from the backlog, the metric
 indicates the team needs to focus on better planning.
 If, instead, it is much less than 85%, still the team has to
 improve their forecasts with better grooming sessions,
 or splitting stories better to improve estimations and
 using spikes for research.
 There are several techniques to split stories, I have
 already described some of them earlier in the book.
 One common mistake you should avoid is to use this
 metric to compare teams or to evaluate their
 performance, this is not the purpose of it.

 Release Frequency . The first principle of the Agile
 Manifesto is: “Our highest priority is to satisfy the
 customer through early and continuous delivery of
 working software”.

126 A Pocket Guide for Scrum Teams

 Therefore, one of the aims of agile teams is to deliver in
 short cycles and this metric can help understand
 whether teams are really building potentially shippable
 software.
 If teams are failing to deliver code to production, then
 they are failing to meet their primary purpose.
 This metric also gives qualitative insight into the release
 process, if it is easy for the team or it requires heroics,
 and how solid the environments are.

 Automated Test Coverage . It captures how much of
 your codebase is covered by automated tests.
 Test automation brings speed, efficiency and reliability to
 testing and it is a prerequisite to continuous delivery in
 fast-paced agile development environments, as it
 contributes to reducing the amount of time required to
 release working software.
 This metric can have a crucial role in measuring the
 effectiveness and accuracy of your team’s automated
 testing efforts as it can help to reveal parts of the
 software that do not have sufficient test coverage.

 Escaped Defects . It measures the number of defects
 found in the product once it has been delivered to the
 user.
 You can capture this metric per unit of time (per Sprint,
 or release) and your rate is a constant feedback loop to
 how your team is doing.
 It is also a measure of deployed software quality and
 can provide insight into what went wrong with
 development or testing in a specific part of the project,

1273.21 - Metrics

 and you can use the Escaped Defects rate to know
 when you need to slow down or improve testing.
 Spikes or a steady climb in this metric would encourage
 further analysis as with a high escaped defect rate, even
 the most awesome product is going to have a lot of
 unsatisfied customers.

 Team Morale . My final metric, not strictly related to the
 agile process, it’s a look at the team's well-being.
 The ultimate goal of this indicator is to ensure the team
 is successful. There is a direct relationship between
 morale and productivity, happy teams create better
 work, which will deliver more satisfied customers.
 The difficult step in managing morale is measuring it.
 It is true that there are some signals not difficult to spot
 such as an increasing turnover rate. When more people
 than usual leave your team, it may be a sign of
 dissatisfaction.
 However, you can also talk regularly with your team,
 they can often tell you how they feel. You could have a
 quick survey during a retrospective with the team writing
 their happiness scores, using a 1-5 scale or smiley face
 indicators.
 Moreover, you can track these numbers from Sprint to
 Sprint to see the trends.

 Whether you use all of the measurements discussed or
 only a subset, it is important that any solution consider
 the audience for the data. Make sure you use the
 metrics as a support to improve the process and not to
 punish the teams. Always be sure to fully understand

128 A Pocket Guide for Scrum Teams

 and communicate accurately what the metrics are
 saying, and follow where the data lead.
 Comparing the evolution for each indicator over time
 and connecting them to the business metrics will help
 you empower the teams and achieve the expected
 outcome.

1293.21 - Metrics

130

 Chapter 22

 Release Planning

 In Agile environments, planning takes place at multiple
 levels. Formally Scrum defines only the Sprint Planning
 event and the “daily planning” which happens with the
 Daily Scrum. However, most organisations benefit from
 release planning which is a longer term planning. It is a
 high-level planning of multiple Sprints (three to six
 iterations in most cases).

 One of the most important steps in the release planning
 process is defining the vision for your product. The
 vision will guide subsequent decisions on which features
 to prioritise, where to focus effort and resources, and
 how to adapt if the project requires adjustment during

 development. All the above aspects contribute to
 maximising the chances of achieving the desired
 outcome.

 As a first step, an organisation must determine the
 proper cadence for releasing features to its customers.
 Some organisations decide to release every Sprint,
 while others combine multiple Sprints into one release
 and others release just after the completion of each
 feature, this practice is called Continuous Deployment or
 Continuous Delivery.
 Whether the organisation intends to deploy every Sprint,
 every few Sprints, or continuously, they find some
 amount of longer-term, higher-level planning to be
 useful.
 The process involves determining the work to be done,
 understanding scope, date and budget constraints,
 monitoring progress from Sprint to Sprint and making
 adjustments as required. It involves the entire Scrum
 team and the stakeholders. At some point, the
 involvement of all these people is necessary to maintain
 a good balance between value and quality.

 Before starting the release planning and creating a
 release plan, the following must be available:

 ● A product backlog, which has been prioritised
 and estimated.

 ● How much work the Scrum team can complete
 per iteration (Velocity).

132 A Pocket Guide for Scrum Teams

 ● The agreed goals for the scope, schedule and
 resources.

 As I have already mentioned, the constraints of scope,
 date, and budget are important variables that affect how
 we will achieve our goal. These constraints are either
 fixed or flexible. I will describe two realistic options to
 create our release plan, depending whether the project
 is feature-driven or date-driven.

 Feature-driven
 A feature-driven model is appropriate where the scope
 is more important than the date. In this model, when we
 run out of time and we haven’t completed all of the
 features, we extend the date to ensure that we get
 everything required.
 If we are doing a feature-driven release, we must know
 what the features are at the start of the release.
 This is usually true when we are building a simple or
 familiar product. In case instead we are developing
 innovative products, many features will emerge and
 evolve during the development effort. We certainly have
 some idea of the desired features up front, so we will
 use them in our initial release planning. However, we
 must be prepared to continuously revise our release
 plan as our understanding of the required features
 changes.

1333.22 - Release planning

 If an emergent must-have feature appears, we will
 simply add it to the scope of the release and push out
 the release date.
 During feature-driven planning, we need to calculate the
 number of Sprints required to deliver the fixed set of
 features. The number of Sprints needed to complete the
 release is determined by using the sum of all features
 divided by the expected Velocity of the Scrum Team.

 Date-driven
 Many people consider this to be the approach most
 closely aligned with Scrum principles. We can fix both
 the date and the budget, but the scope must be flexible.
 The Scrum principle of creating the highest-priority
 features first should alleviate any pain of having to drop
 features. When we run out of time on a date-driven
 release, whatever has not yet been built should be of
 lower value than what has already been built, therefore
 it is much easier to make a decision to ship if the
 features that are missing are low value.

 Assuming that the length of each Sprint is the same
 throughout this release, which is the normal case with
 Scrum, to find out how much work can be completed
 within a given time-frame, the Velocity of the Scrum
 Team is multiplied by the number of Sprints.

 The outcome of the Release Planning is a release plan
 that communicates when we will finish the product, what

134 A Pocket Guide for Scrum Teams

 features we will get at the end, and how much will be the
 cost. Of course, assuming that we proceed with the
 release, we must revisit our release plan every Sprint to
 update it based on our current knowledge.

 In order to have the best release plan possible, I would
 suggest to follow these five tips:

 Keep the Focus on Goals . There’s a lot to take into
 account when developing the release plan. You can
 easily get lost in the weeds. You want to keep your eyes
 on the priorities: goals, benefits and results. Features
 contribute to a goal. Focus on the goal and the feature
 will follow.

 Identify Task Dependencies . Dependencies are tasks
 and User Stories in the Product Backlog that cannot
 start or end until another starts or ends. If you’re not
 aware of the dependent User Stories in your release
 plan, you are going to suffer delays and block your
 team. By identifying these User Stories beforehand and
 making sure you stay aware of them, you’re going to
 keep the Scrum Team working without unnecessary
 interruption.

 Release Often . The mandate of any release planning is
 to release your product to customers. Only then will you
 be able to determine if the User Stories you released
 were of value to them. Therefore, release often. Smaller
 releases are easier to digest for customers than having
 a couple of big ones per year.

1353.22 - Release planning

 Release Done Work . It might sound obvious, but often
 work in the Product Backlog is moved forward through
 production without being completed. These incomplete
 User Stories can involve a lot of time and money to fix.
 That will take away from your main goal, which is
 delivering value to your customers. Have a Definition of
 Done for your User Stories and product deliverables and
 stick to it.

 Continuously Improve . Good enough isn’t good
 enough. There will always be room for improvement, but
 like release planning these improvements should be
 applied incrementally. Give them time to prove
 themselves.

136 A Pocket Guide for Scrum Teams

 Chapter 23

 Agile games

 Most people think that games and business work
 doesn’t seem like a natural pairing, I think instead
 games are serious instruments to explain key principles
 in an interactive way. Playing games for learning is
 especially helpful for concepts which can be easily
 misunderstood because they are different from existing
 ways of working.

 Battleship game

 The first Agile game I would like to introduce is called
 "Battleship". This game is generally used to experience
 the difference between the Waterfall design process and
 the Agile process. It introduces people to iterative
 development and explains the concepts behind it. The
 idea is to get people to understand that up-front, large
 plans are just not recommended. I am going to describe
 how to play the game.

 Description of the game

 Split the group into two teams: the Grand Plan team
 (Team A) and Frequent Feedback team (Team B).
 The game is run in a single round during which each
 team will take 30 shots.
 To score the game, each team gets 1 point for a hit and
 an additional 2 points for each ship sunk.
 Each team starts by laying out their ships on the grid.
 Team A is told to place all their planned attacks up front.
 Team B plans and takes one shot at a time.
 Once Team A has determined all 30 shots, they inform
 Team B of their shots. After Team A has shared all of
 their shots, Team B lets Team A know which shots were
 hits and if any ships were sunk. After Team A completes
 their turn, Team B responds. Team B takes a single
 shot, gets feedback from Team A (Miss / Hit / Sunk), and
 decides their next shot. They do this 30 times.
 For the basic game, the win is usually quite clear with
 Team A scoring much less than Team B. The learning
 point is that responsiveness is vital to success, the

138 A Pocket Guide for Scrum Teams

 tighter we make the learning feedback loop, the more
 successful we can be.

 Variation

 In this variation, split the group into two teams: the Small
 Releases team (Team A) and Continuous Delivery team
 (Team B).
 The game is played in 4 rounds of 8 shots each.
 To score this variation of the game, each team gets a
 single point for a hit, an additional 2 points for each ship
 sunk, and 2 bonus points for each ship discovered and
 sunk in a single round.
 Each team starts by laying out their ships on the grid.
 Team A still pre-plans the 8 shots per round and
 executes them all at once, receiving feedback after each
 round.
 Team B still takes a single shot at a time for 8 shots,
 getting immediate feedback.
 Mark shots with the round number in which they were
 taken. This will not only help keep track of the activity
 per round, but will help with the scoring.
 In the variation game, the difference in score is smaller,
 but still present. The learning point is that too fast a
 feedback loop is not always better than a small batch;
 having a pause to consider what we’re going to focus on
 next and designing a short term strategy for it ensures
 that there actually is a strategy.

1393.23 - Agile games

 Agile games build a safe-to-fail environment and let
 participants get a first hand experience of new concepts.
 For example, suppose you need to introduce a new
 team to the Agile mindset and suppose managers will
 participate too. Do not start it by giving a standard
 presentation with slides about agile values and
 principles, self-organising teams and so on, use a game
 instead. More precisely, use a physical agile game: the
 Ball Point Game (invented by Boris Gloger).

 The Ball Point Game

 The second game I want to describe simulates an agile
 production process. It is basically an analogue of the
 Scrum process. The team will self-organise and form a
 process based on the rules provided. The objective is to
 pass as many balls as possible in the given timeboxes
 through the team by following certain rules.

140 A Pocket Guide for Scrum Teams

 In order to play the Ball Point Game, you’ll need a large
 open space with enough room for everyone to stand.
 You’ll also need a large number of brightly colored ping
 pong balls (about 60 for a group of 50 people) and you
 may want a whiteboard to do the debriefing and a
 stopwatch.

 The Rules

 The rules are quite simple and the more people you have,
 the more exciting it can be. You play the game best with
 more than 6 participants and it would be an excellent
 game for larger groups up to 50 people.

 ● You are one big team.
 ● Each ball must be touched at least once by every

 team member.
 ● Each ball must have air-time, in other words, it

 must not be passed directly from hand to hand.
 ● You cannot pass the ball to the person immediately

 to your left or right.
 ● Each ball must return to the same person who

 introduced it into the system. For each ball that
 does, the team scores 1 point.

 ● If you drop a ball, you cannot pick it up.
 ● There will be a penalty (points deducted) if you

 break any of the rules.
 ● If you’ve played this game before, please

 participate silently so you don’t spoil it for others.

1413.23 - Agile games

 In the game, there are two roles, only: the team
 (included PO) and the facilitator.
 Here’s how to play the game:

 ● Allow the team to prepare and to determine how
 they will organise themselves. (2 min)

 ● Ask the team for an estimate how many balls they
 can pass through the system at the first run (each
 run is 2 minutes).

 ● Run the first iteration. (2 min) – at the end check if
 someone counted the balls

 ● Allow the team to discuss how to improve the
 process. (1 min)

 ● Repeat for five iterations (recording the estimate,
 actual and changes each time).

 Hints for the facilitator: after a couple of iterations, during
 the learning minute, you might want to give the team clues,
 such as eliminate waste, maximise resources. Later you
 might want to hint that they should use both hands, and
 later still that they could cup their hands together to drop
 fewer balls (less waste). Try not to make the hints too
 obvious too early in the game.

 At the end of the exercise, debrief for five to ten minutes.
 There are a number of basic agile principles and values
 that are worth talking about.

142 A Pocket Guide for Scrum Teams

 ● Trust. See how to build trust in the team and in
 individuals.

 ● Self-organisation. See how the team makes
 decisions to work best, without control from outside
 managers.

 ● Inspect & Adapt. See how the team steps back and
 reflects in retrospectives on a regular basis to
 improve their own work.

 ● Timeboxed, incremental delivery. See how the
 team estimates, plans, and improves quality in an
 iterative manner.

 ● Agile events. Getting acquainted with "Sprint",
 "Retrospective", "Planning", "Estimation".

 ● Learning. See how fast the team succeeds.

 All in all, the Ball Point Game is a great ice-breaker, good
 fun and very thought-provoking.

 Before closing this part of the book, I would like to
 remind you that, because practises come and go, it is
 important for agile teams to understand the principles
 that lead to the creation of specific practises.
 The same is true of our methods, methodologies,
 frameworks, or whatever we choose to call collections of
 practises such as Scrum, XP, Safe, and LSS.
 Rather than devotion to practises or frameworks, the
 priority is keeping the various principles of agile in mind.

1433.23 - Agile games

144

 Part IV

 Scrum played at scale

146

 Chapter 24

 Main challenges when scaling
 Agile

 The success of Agile methods for small, co-located
 teams has inspired use in new domains. The number of
 companies that apply Agile practises to large-scale
 projects is increasing, but this raises new challenges as
 well.
 Fundamental assumptions in Agile development are
 severely challenged when using these practises in
 large-scale projects. The good news is that in addition to
 the basic rules to play the game of Scrum, described
 earlier in the book, there are some tactics that allow
 Scrum, and more in general Agile, to be played at a
 larger scale.

 Adapting to these scaling Agile models is not done
 overnight and is surely not easy.
 During the journey of adapting to scaling Agile models,
 the most common implementation challenges
 organisations face are listed below.

 Forming a New Mindset

 A major prerequisite when adapting to any scaling Agile
 model is having a Lean Agile mindset. It is not just one
 person who needs to have it, but it has to slowly and
 steadily be incorporated with everyone in the entire
 organisation. Leaders need to be taught the concept of
 servant leadership where the priorities of the teams are
 kept first. Teams need to be taught on how to take
 ownership of their work and should be empowered to
 make their own decisions.

 Going through a Culture Shift

 When working with the scaled Agile model, you need to
 dismantle the age-old concept of top-down hierarchies
 and work within your small circle. Agile propels working
 in collaboration with multiple teams in synchronisation
 believing that project demands and requirements keep
 changing. To bring fuel to the rage of cultural shift, Agile
 leaders have to play a significant role. The leaders must
 embrace the idea of failing fast and learning from the
 change. Instead of achieving milestone over the

148 A Pocket Guide for Scrum Teams

 milestone, leaders should encourage and prioritise value
 and flow above all. They should adjust their
 management style.
 Transforming to this culture takes time and is certainly
 not an easy task. Many people oppose the idea of a
 more self empowered team. Individuals are accustomed
 to the traditional ways of command style management
 and refuse to give up that mentality. Accepting change
 is not easy, but once you take a leap of faith, the future
 is golden.

 Experience a Work management shift

 Traditional work and project management approaches
 start with a fixed scope and estimate the time and
 resources (people) necessary to achieve that scope.
 This idea assumes that, by defining requirements up
 front, organisations can reduce risk and increase
 success. The Lean-Agile model, on the other hand, flips
 that paradigm. Time and resources become more fixed
 through established iteration windows while scope
 becomes more fluid, influenced by constant learning and
 change. Teams experiment and receive feedback
 quickly and adjust the scope accordingly so that
 organisations can adapt in an agile way. When scaling
 Agile, organisation can shift their work management
 approach by:

1494.24 - Main challanges when scaling Agile

 ● Adjusting budgeting practises from being
 project-driven to being determined by value
 stream.

 ● Modifying team structures to enable rapid
 experimentation and active collaboration
 amongst teams.

 ● Practising horizontal communication patterns
 instead of the top-down approach.

 Support a technology shift

 Finally, organisations working towards scaling Agile
 must address their technology stack. Scaling Agile
 across the enterprise both requires and creates
 increased visibility, transparency, and information flow.
 For most organisations, that means evaluating and
 potentially augmenting or replacing technology
 solutions.
 What technology tools can facilitate scaling Agile? It
 depends, in part, on the organisation’s Agile maturity.
 If the business already supports multiple Agile teams,
 scaling Agile may mean implementing a solution that
 can connect them for improved transparency and flow.
 Other organisations may need something more robust
 that can go beyond teams’ and teams of teams’ visibility
 to map Agile work to the greater portfolio.
 In both cases, they should look for a tool that allows
 information and collaboration to flow in both directions,
 mapping strategic plans down to Agile teams and rolling

150 A Pocket Guide for Scrum Teams

 work, impact, and financial contributions up to strategic
 objectives.

1514.24 - Main challanges when scaling Agile

152

 Chapter 25

 Major frameworks for scaling
 Agile

 People expect that implementing a new scaled agile
 framework will instantly do wonders. But it is not like
 that. These practises are easier said than done.
 Transforming one individual is one thing, aiming to
 improve the entire organisation is another. This is
 nothing to be worried about. It takes time, patience and
 consistency to achieve the level of perfection that
 everyone hopes for.
 A framework helps you avoid reinventing the wheel with
 regard to the structure, processes and the principles to
 follow for your organisation to become agile.

 It is also good to hire an agile coach. Their knowledge
 attained from numerous training sessions and real-time
 experience can prove to be extremely valuable in
 guiding every individual. An agile coach can also
 connect and completely understand the pain that most
 individuals may be going through during this transition.

 So, let’s look at some of the most important
 characteristics of five frameworks for scaling your agile
 adoption.

 Scrum@Scale (SaS)

 It seeks to do at scale what Scrum does for a single
 team: keep the what (product) and the how (process)
 separate. To that end, it defines two distinct but
 overlapping cycles: the Scrum Master Cycle for product
 delivery and the Product Owner Cycle for product
 discovery. Two new roles facilitate the scaled versions of
 the Scrum events: the Scrum of Scrums Master and the
 Chief Product Owner.
 The main goal is to align growing organisations around
 one common and shared set of goals. Cross-team
 coordination is managed through a Scrum of Scrums.
 This technique introduces the concept of a team of
 teams with its own backlog for everything needed to
 coordinate the teams’ work and resolve impediments
 that a single team can’t tackle on their own. It requires
 continuous communication between different Scrum
 teams, especially in those areas where they overlap.

154 A Pocket guide for Scrum Teams

4.25 - Major frameworks for scaling Agile 155

 Scrum of Scrums meetings are usually attended by the
 Scrum Masters of every team.

 Large Scale Scrum (LeSS)

 LeSS is a framework for scaling agile product delivery.
 Like other Scrum-based frameworks, LeSS is
 single-team Scrum with a few adaptations.
 It truly keeps adaptations to a minimum. It is one of the
 least prescriptive frameworks around. There is one
 Product Owner and one Product Backlog for the
 complete shippable product and all teams work on the
 same product.
 It only adds a preliminary part to the Sprint Planning,
 called Sprint Planning One, which is a meeting between
 the Product Owner and rotating team representatives. It
 happens before the multi-team Sprint Planning Two that
 is between all members of each team.
 It also adds an overall retrospective and replaces the
 per-team Sprint reviews with an all-teams one.
 For organisations with more than eight teams, there’s
 LeSS Huge. It divides the product into requirement
 areas and adds just a single role: the Overall Product
 Owner. This role is responsible for product-wide
 prioritisation and deciding which teams work in which
 requirement area.
 All areas follow the same Sprint and produce a single
 integrated product increment.

 Nexus

 Nexus builds upon Scrum’s foundation, and it minimally
 extends the Scrum framework only where absolutely
 necessary to enable a group of 3 to 9 scrum teams,
 called Nexus, to work with a single product owner and a
 single product backlog (similar to Scrum@Scale and
 Less) to build an integrated Increment that meets a goal.
 Nexus seeks to preserve and enhance Scrum’s
 foundational bottom-up intelligence and empiricism
 while enabling a group of Scrum Teams to deliver more
 value than can be achieved by a single team. It does
 this by introducing a Nexus Integration Team and
 Cross-Team Refinement to coordinate the work and
 helping teams to reduce the complexity created by
 cross-team dependencies that they encounter as they
 collaborate to deliver an integrated, valuable, useful
 product Increment at least once every Sprint.
 The Nexus Integration Team deals with integration
 issues that would prevent the Nexus from delivering an
 integrated product Increment. It consists of the Product
 Owner, plus a Scrum Master and members from the
 development teams.
 Cross-Team Refinement is an ongoing activity to identify
 cross-team dependencies and surface early which team
 will likely work on an item. Who attends can vary with
 the items up for refinement.

 Other adaptations to single-team Scrum events, are:

156 A Pocket Guide for Scrum Teams

 ● Nexus Sprint Planning to coordinate the work of
 all teams in the Nexus.

 ● Nexus Daily Scrum in addition to each team’s
 daily scrum to keep tabs on (newly discovered)
 dependencies and integration issues.

 ● Nexus Sprint Review that replaces the individual
 team’s sprint reviews.

 ● Nexus Sprint Retrospective to review how the
 teams and their shared processes and tools
 functioned. It closes the Sprint, so it follows the
 individual teams’ retrospectives.

 Disciplined Agile (DA)

 Disciplined Agile started as Disciplined Agile Delivery
 (DAD), with a focus on product delivery. It evolved from
 there and was renamed Disciplined Agile to reflect its
 widening scope. DA covers everything from project
 conception to delivery to clients.
 It is lightweight. Indeed, it shines a light on the “what”
 and the tools you need to make it happen, but it leaves
 the “how” up to you.

1574.25 - Major frameworks for scaling Agile

 The Disciplined Agile is a hybrid model, which is formed
 by a collection of the world’s proven Lean-Agile methods
 such as Kanban, XP, Agile Modelling, Unified Process
 and many more.
 The DA process works in three stages – Inception,
 Construction, and Transition.
 To make this regular process more Agile, the method
 also weaves in four different life cycles that describe
 how to complete the work at hand.

 The four Agile DA lifecycles are:

 Agile Delivery lifecycle . It is based on Scrum. It helps
 to turn goals into a work item list and then into short
 milestones.
 Lean lifecycle . It creates a continuous stream of
 workflow throughout the project. It ensures the
 processes are optimised and there are little to no
 bottlenecks.
 Continuous Lean and Agile Delivery lifecycle . It
 ensures that teams use iterations to work and deliver
 fast and often. It focuses mainly on the construction and
 transition phases.
 Exploratory (Lean Startup) lifecycle . It aims to
 brainstorm new solutions based on the gathered
 feedback.

 Teams can choose which life cycle works best for them
 and an Agile coach helps them in understanding when
 to use the chosen cycle.

158 A Pocket Guide for Scrum Teams

 Scaled Agile Framework (SAFe)

 It is a set of principles, practises and workflows enabling
 larger companies to move towards an agile way of
 working and offers guidance at the Portfolio, Value
 Stream, Program, and Team levels .
 SAFe combines Lean, Agile, and DevOps practises for
 business agility. It promotes alignment, collaboration,
 and delivery across large numbers of agile teams.
 Many agile practitioners consider SAFe overly
 prescriptive and complex.
 It does indeed prescribe many roles, events, and
 practises. They add quite some complexity and require
 significant investment and commitment to adopt. And
 they do detract from the flexibility that Agile holds dear.
 However, for very large enterprises this can be a
 blessing. SAFe’s prescriptive nature provides concrete
 guidance without forcing you to immediately remodel
 your enterprise’s organisational structure or your
 product’s architecture to help minimise team
 dependencies.
 Since one team is rarely enough to finish a product,
 several teams working on the same goal are grouped
 together and called Agile Release Trains (ART).
 The train works similarly to an iteration. However, it
 takes longer (usually around 5 iterations of a single
 team) and the process is facilitated by a dedicated
 Release Train Engineer (RTE).
 One of the tools it uses for this is its quarterly planning
 event: the Program Increment Planning (PI planning).

1594.25 - Major frameworks for scaling Agile

https://www.scaledagile.com/team/dean-leffingwell/

 It’s a top-down collaborative event and planning cycle on
 top of and overarching the standard Scrum Sprint cycle
 or cadence in Kanban.
 PI planning allows you to align everyone (at your level of
 adoption) on the strategic goals for the coming three
 months. It helps surface the dependencies between
 teams and departments involved, and come up with a
 prioritisation that allows you to move efficiently towards
 the PI goal.

 All teams take part in the planning, testing, and
 retrospectives, while product management provides the
 vision and the backlog.
 If one release train is not sufficient to cover the whole
 organisation, multiple trains are grouped together into
 something called a Solution Train.
 To conclude, I would like to add some notes on the
 SAFe levels:

 ● At the Team level, teams can choose to follow
 Scrum or Kanban plus several XP (eXtreme
 Programming) practises.

 ● The Program level coordinates team efforts with
 quarterly Program Increment Planning (PI
 Planning) and a team of teams called the Agile
 Release Train (ART).

 ● If you have a large product that more than 150
 people work on, at Value Stream level, SAFe
 adds a Solution Train to coordinate the various
 ARTs and a Solution Train Engineer whose role

160 A Pocket Guide for Scrum Teams

 is similar to the RTE’s but at a more integrated
 level.

 ● The Portfolio level manages development
 streams and coordinates with the other levels to
 ensure that Agile Release Trains and Solution
 Trains align with strategic goals.

 Scaling Agile can be an intimidating prospect, but each
 of these Scaled Agile Frameworks and approaches is
 designed to help you on your journey. If none of the
 frameworks and approaches mentioned here appeal to
 you, other frameworks and approaches abound, and
 about 1 in 6 companies roll their own.

1614.25 - Major frameworks for scaling Agile

 Glossary
 Agile: A specific set of values and principles, as
 expressed in the Manifesto for Agile Software
 Development.

 Agile modelling (AM): A methodology for modelling and
 documenting software systems based on best practises.
 It is a collection of values and principles that can be
 applied on an (agile) software development project. This
 methodology is more flexible than traditional modelling
 methods, making it a better fit in a fast changing
 environment. It is part of the agile software development
 tool kit.

 Artifact: A tangible by-product produced during product
 development. The product backlog, sprint backlog, and
 potentially shippable product increment are examples of
 Scrum artifacts.

 Burn-down Chart: a chart showing on the vertical axis
 the quantity of work remaining over time, which is shown
 on the horizontal axis.

 Ceremony: A ritualistic or symbolic activity that is
 performed on well-defined occasions. Some people
 refer to the core Scrum activities of Sprint Planning,
 Daily Scrum, Sprint Review, and Sprint Retrospective as
 ceremonies.

 Cross-functional team: A team composed of members
 with all the functional skills (such as UI designers,
 developers, testers) and specialties necessary to
 complete work that requires more than a single
 discipline.

 Daily Scrum: Time-boxed and adaptive planning activity
 that the team performs each day during a Sprint. It
 serves for the team to inspect the daily progress and
 update the Sprint Backlog. This event is also called daily
 stand-up or simply stand-up.

 Definition of Done: A checklist of the types of work that
 the team is expected to successfully complete by the
 end of the sprint, before it can declare its work to be
 potentially shippable.

 Definition of Ready: A checklist of conditions that must
 be true before a product backlog item is considered
 ready to pull into a Sprint during Sprint Planning.

 Developers: A self-organising, cross-functional team of
 people who collectively are responsible for all of the
 work necessary to produce working, validated assets.
 One of the three roles that constitute every Scrum team.

 Empiricism: A process control type in which decisions
 are based on observation, experience and
 experimentation. It supports the principles of inspection,
 adaptation, and transparency.

163

 Increment: The sum of all the Product Backlog items
 completed during a Sprint and all previous Sprints.

 Product Backlog: A list of all the things that must be
 done to complete the whole project.

 Product Owner (PO): A member of the Scrum Team who
 has a clear view on the goals of the project, customer,
 market and organisation.

 Pull system: A lean technique that is used to control the
 flow of work by only replacing what has been consumed.

 Scrum Master (SM): A member of the Scrum Team who
 is responsible for ensuring the team lives Scrum values
 and principles and follows the processes and practises
 that the team agreed they would use.

 Scrum Team: A group of collaborators, typically between
 five and nine individuals, who work toward completing
 projects and delivering products. The fundamental
 Scrum Team comprises one Scrum Master, one Product
 Owner and a group of developers.

 Sprint: Short and time-boxed period when a Scrum
 Team works to complete a set amount of work.

 Sprint backlog: The part of the product backlog that the
 Scrum Team will be working on in their Sprint.

164

 Sprint goal: A shared high-level explanation of what the
 Scrum Team plans to achieve during the course of a
 Sprint.

 Sprint Planning: The event that kicks off the Sprint by
 defining what can be delivered in the Sprint and how
 that work will be achieved.

 Sprint Retrospective: A recurring meeting held at the
 end of a Sprint, used by the Scrum Team to inspect itself
 and create a plan for improvements to be enacted
 during the next iteration.

 Sprint Review: A recurring meeting that takes place at
 the end of the Sprint, used by the Scrum Team to
 inspect the outcome of the Sprint and to consider the
 plan for the product in the future.

 Stakeholders: Stakeholders are people and organisation
 units who frequently interface with the product owner,
 scrum master and scrum team to provide them with
 inputs and facilitate creation of the project's products
 and services, influencing the project throughout the
 project's development.

 Story Point: Unit of measure for expressing an estimate
 of the overall effort required to fully implement a piece of
 work.

165

 Unified Process: Is based on the enlargement and
 refinement of a system through multiple iterations, with
 cyclic feedback and adaptation. The system is
 developed incrementally over time, iteration by iteration,
 and thus this approach is also known as iterative and
 incremental software development.

 User Story: short, informal, plain language description of
 what a user wants to do within a software product to
 gain something they find valuable.

166

 Meet the Author

 Katya is passionate about helping
 others love their job, adopting
 contemporary work practises (like
 Agile, Scrum, Kanban, XP, DevOps)
 and bringing meaningful change into
 organisations that will improve
 performance and quality of life in the
 workplace. She strongly believes that
 today’s leaders must inspire and
 collaborate, not micromanage, to bring agility and
 innovation in their orgs.
 She is an excellent team worker with strong coaching
 and mentoring skills, has a servant leadership approach
 to the team, provides extended support whenever
 possible and leads by example when needed.
 In March 2016 she became a Certified Scrum Master
 and since then she has been practising Agile methods.
 Having worked in Information Technology for over 20
 years, her knowledge of Computer Science makes it
 easier to collaborate with teams of talented product
 developers.
 For more information, visit katyaagosti.co.uk.
 You can also find Katya on Linkedin as
 https://www.linkedin.com/in/katya-agosti-08086569/

167

 Thank-you notes
 As any author will tell you, there may be one name on
 the front cover, but a book is only possible due to the
 hard work of multiple people. I would like to call your
 attention to the few who supported me.

 First and foremost, many thanks to my lovely partner,
 Rosario, for your valid advice and encouragement on
 the book project. I am so lucky to have you in my life.

 A very special thank you goes to my sister, Valeria
 Agosti, for the amazing collaboration on creating the
 cover and the pictures inside the book.

 Moreover, I would like to offer deep gratitude to my
 coach and friend, Kelly Cook, who kindly donated her
 time to review drafts of this book and has been there for
 the entire journey.

 And, lastly, to you, the reader. Thanks for reading!

168

 Bibliography
 Accelerate, building and scaling High Performing
 Technology Organisations, by Nicole Forsgren, PhD Jez
 Humble, and Gene Kim, ISBN 978-1942788331, (2018) IT
 REVOLUTION

 Actionable Agile Metrics for Predictability , by Danie
 Vacanti, ISBN 978-0986436338, (2015) Leanpub

 Agile Retrospectives: Making Good Teams Great , by
 Esther Derby and Dian Larsen, ISBN 978-0977616640,
 (2006) Pragmatic Bookshelf

 Coaching Agile Teams, A companion for Scrum Masters,
 Agile Coaches, and Project Managers in Transition , by
 Lyssa Adkins, ISBN 978-0321637703, (2010) Addison -
 Wesley

 Essential Scrum, a practical guide to the most popular
 agile process , by Kenneth S. Rubin, ISBN
 978-0137043293, (2013) Addison Wesley

 Scrum, A Pocket Guide, A Smart Travel Companion , by
 Gunther Verheyen, ISBN 978-9087537203, (2013) Van
 Haren Publishing

 SPRINT, how to solve big problems and test new ideas in
 just five days, by Jake Knapp with John Zeratsky and

169

 Braden Kowitz, ISBN 978-1501140808, (2016) Simon &
 Schuster Paperbacks

 The Art of Agile Development , by James Shore and Shane
 Warden, ISBN 978-0596527679, (2007) O’REILLY

 The elements of Scrum, by Chris Sims and Hillary Louise
Johnson, ISBN 978-0982866917, (2011) DYMAXICON

 The Lean Startup: How Constant Innovation Creates
Radically Successful Businesses , by Eric Ries, ISBN
978-0670921607, (2011) Penguin Business

170

https://www.planview.com/resources/guide/agile-methodologies-a-beginners-guide/history-of-agile/

Online References
Chapter 1
Manifesto for Agile Software Development (n.d.). Available at
https://www.agilealliance.org/agile101/the-agile-manifesto/
The History of Agile (n.d.). Available at
https://www.planview.com/resources/guide/agile-methodologie
s-a-beginners-guide/history-of-agile/

Chapter 2
Agile & Waterfall Methodologies – A Side-By-Side
Comparison (n.d.). Available at http://www.base36.com
The Traditional Waterfall Approach (2009). Available at
https://www.umsl.edu/~hugheyd

Chapter 3
Agile and Lean (n.d.). Available at
https://www.planview.com/resources/guide/lean-principles-101
/agile-and-lean/
Creating customer value with Lean Thinking(n.d.). Available at
https://www.winman.com/blog/creating-customer-value-with-le
an-thinking
Ford Production System: A successful adoption of Lean
manufacturing (2013). Available at
http://cmuscm.blogspot.com/2013/02/adoption-of-lean-manufa
cturing-ford.html
From supermarkets to software: history of Kanban (2018).
Available at https://getnave.com/blog/kanban-history/
History of Lean (n.d.). Available at
https://sixsigmastudyguide.com/history-of-lean/

171

https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.planview.com/resources/guide/agile-methodologies-a-beginners-guide/history-of-agile/
https://www.planview.com/resources/guide/agile-methodologies-a-beginners-guide/history-of-agile/
http://www.base36.com
https://www.umsl.edu/~hugheyd/is6840/agile.html
https://www.planview.com/resources/guide/lean-principles-101/agile-and-lean/#:~:text=A%20truly%20Lean%2DAgile%20process,of%20frequent%2C%20iterative%20value%20delivery
https://www.planview.com/resources/guide/lean-principles-101/agile-and-lean/#:~:text=A%20truly%20Lean%2DAgile%20process,of%20frequent%2C%20iterative%20value%20delivery
https://www.winman.com/blog/creating-customer-value-with-lean-thinking
https://www.winman.com/blog/creating-customer-value-with-lean-thinking
http://cmuscm.blogspot.com/2013/02/adoption-of-lean-manufacturing-ford.html
http://cmuscm.blogspot.com/2013/02/adoption-of-lean-manufacturing-ford.html
https://getnave.com/blog/kanban-history/
https://sixsigmastudyguide.com/history-of-lean/

How lean and agile relate and how you can win by using both
(2021). Available at
https://www.plutora.com/blog/how-lean-agile-relate
Lean and Agile - Ideas that work together (2019). Available at
https://www.leaneast.com/lean-and-agile-work-together
Lean Management History (n.d.). Available at
https://www.wevalgo.com/know-how/lean-management/lean-
management-history
The Origins and Evolution of Lean Management Systems
(2012). Available at
https://www.jois.eu/files/DekierV_5_N1.pdf
What is Lean? (2017). Available at
https://theleanway.net/what-is-lean

Chapter 4
Agile frameworks (n.d.). Available at
https://www.toolsqa.com/agile/agile-methodology/
Agile framework comparison: Scrum vs Kanban vs Lean vs
XP (2017). Available at
https://dzone.com/articles/agile-framework-comparison-scrum
-vs-kanban-vs-lean
Crystal Clear - Human Powered Methodology For Small
Teams (n.d.). Available at
https://www.agilest.org/scaled-agile/crystal-clear/
Kanban vs Scrum vs XP – an Agile comparison
(n.d.). Available at
https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comp
arison/
Scrum (software development) (n.d.). Available at
https://en.wikipedia.org/wiki/Scrum_(software_development)
The Kanban Method (2018). Available at
https://getnave.com/blog/what-is-the-kanban-method/

172

https://www.plutora.com/blog/how-lean-agile-relate
https://www.leaneast.com/lean-and-agile-work-together
https://www.wevalgo.com/know-how/lean-management/lean-management-history
https://www.wevalgo.com/know-how/lean-management/lean-management-history
https://www.jois.eu/files/DekierV_5_N1.pdf
https://theleanway.net/what-is-lean
https://www.toolsqa.com/agile/agile-methodology/
https://dzone.com/articles/agile-framework-comparison-scrum-vs-kanban-vs-lean
https://dzone.com/articles/agile-framework-comparison-scrum-vs-kanban-vs-lean
https://www.agilest.org/scaled-agile/crystal-clear/
https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comparison/
https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comparison/
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://getnave.com/blog/what-is-the-kanban-method/

Chapter 5
Agile Games (n.d.). Available at
https://www.plays-in-business.com/agile-games-facilitation/
Agile Games - ball point game (2011). Available at
https://www.101ways.com/2011/09/27/agile-games-ball-point-
game/
Agile Games - Battleship! (2019). Available at
https://onbelay.co/articles/2019/2/6/agile-game-battleship

Chapter 6
A short history of Scrum (2017). Available at
https://www.exin.com/article/short-history-scrum
Scrum Framework History (n.d.). Available at
https://agileforgrowth.com/scrum-history/
Scrum, the essential agile method for software development
(2019). Available at
http://www.aligntechsolutions.com/2019/02/scrum-the-essenti
al-agile-method-for-software-development/
Scrum, what’s in a name?(2017). Available at
https://dzone.com/articles/scrum-whats-in-a-name
The brief history of Scrum (2019). Available at
https://warren2lynch.medium.com/the-brief-of-history-of-scru
m-15efb73b4701
The evolution of the Scrum Guide (2019). Available at
https://medium.com/serious-scrum/the-evolution-of-the-scrum
-guide-10-to-19-f3ac4d82cfcb

Chapter 7
The five Scrum values and why they matter (n.d.). Available at
https://nira.com/scrum-values/
The Three Pillars of Empiricism (2016). Available at
https://www.scrum.org/resources/blog/three-pillars-empiricism
-scrum

173

https://www.plays-in-business.com/agile-games-facilitation/
https://www.101ways.com/2011/09/27/agile-games-ball-point-game/
https://www.101ways.com/2011/09/27/agile-games-ball-point-game/
https://onbelay.co/articles/2019/2/6/agile-game-battleship
https://www.exin.com/article/short-history-scrum
https://agileforgrowth.com/scrum-history/
http://www.aligntechsolutions.com/2019/02/scrum-the-essential-agile-method-for-software-development/
http://www.aligntechsolutions.com/2019/02/scrum-the-essential-agile-method-for-software-development/
https://dzone.com/articles/scrum-whats-in-a-name
https://warren2lynch.medium.com/the-brief-of-history-of-scrum-15efb73b4701
https://warren2lynch.medium.com/the-brief-of-history-of-scrum-15efb73b4701
https://medium.com/serious-scrum/the-evolution-of-the-scrum-guide-10-to-19-f3ac4d82cfcb
https://medium.com/serious-scrum/the-evolution-of-the-scrum-guide-10-to-19-f3ac4d82cfcb
https://nira.com/scrum-values/
https://www.scrum.org/resources/blog/three-pillars-empiricism-scrum
https://www.scrum.org/resources/blog/three-pillars-empiricism-scrum

What are Scrum’s Three Pillars? (n.d.). Available at
https://www.visual-paradigm.com/scrum/what-are-scrum-three
-pillars/
What are the Scrum values? (2018). Available at
https://www.extremeuncertainty.com/what-are-the-scrum-valu
es/

Chapter 8
A beginner’s guide to Scrum Ceremonies (2019). Available at
https://www.projectmanager.com/blog/guide-to-scrum-ceremo
nies
A quick guide to Scrum artifacts (2020). Available at
https://www.projectmanager.com/blog/scrum-artifacts
Five steps to find your Definition of Done (2020). Available at
https://plan.io/blog/definition-of-done/
Product Backlog and Sprint Backlog: A Quick Guide (2018).
Available at
https://www.projectmanager.com/blog/product-backlog-sprint-
backlog
Scrum Artefacts (2020). Available at
https://www.ntaskmanager.com/blog/scrum-artifacts
Scrum Roles: The anatomy of a Scrum Team (2018).
Available at
https://www.projectmanager.com/blog/scrum-roles-the-anatom
y-of-a-scrum-team
The Definition of Done: what does done actually mean?
(2017). Available at
https://medium.com/@dannysmith/the-definition-of-done-what
-does-done-actually-mean-ef1e5520e153
The five Scrum Events (n.d.). Available at
https://www.thescrummaster.co.uk/scrum/the-five-scrum-event
s/
The four Agile Scrum Ceremonies Explained (2021). Available
at

174

https://www.visual-paradigm.com/scrum/what-are-scrum-three-pillars/
https://www.visual-paradigm.com/scrum/what-are-scrum-three-pillars/
https://www.extremeuncertainty.com/what-are-the-scrum-values/
https://www.extremeuncertainty.com/what-are-the-scrum-values/
https://www.projectmanager.com/blog/guide-to-scrum-ceremonies
https://www.projectmanager.com/blog/guide-to-scrum-ceremonies
https://www.projectmanager.com/blog/scrum-artifacts
https://plan.io/blog/definition-of-done/
https://www.projectmanager.com/blog/product-backlog-sprint-backlog
https://www.projectmanager.com/blog/product-backlog-sprint-backlog
https://www.ntaskmanager.com/blog/scrum-artifacts
https://www.projectmanager.com/blog/scrum-roles-the-anatomy-of-a-scrum-team
https://www.projectmanager.com/blog/scrum-roles-the-anatomy-of-a-scrum-team
https://medium.com/@dannysmith/the-definition-of-done-what-does-done-actually-mean-ef1e5520e153
https://medium.com/@dannysmith/the-definition-of-done-what-does-done-actually-mean-ef1e5520e153
https://www.thescrummaster.co.uk/scrum/the-five-scrum-events/
https://www.thescrummaster.co.uk/scrum/the-five-scrum-events/

-simple/
The Scrum Guide (2020). Available at
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-
Guide-US.pdf
What are the time-boxed events in Scrum? (n.d.). Available at
https://www.visual-paradigm.com/scrum/what-are-scrum-time-
boxed-events/
What is a Sprint in Scrum? (n.d.). Available at
https://www.visual-paradigm.com/scrum/what-is-sprint-in-scru
m/

Chapter 9
Burndown chart: What is it and how do I use it? (2019).
Available at
https://www.projectmanager.com/blog/burndown-chart-what-is
-it
Five tips for using Scrum boards (2020). Available at
https://www.projectmanager.com/blog/what-is-a-scrum-board

Chapter 10
A better stand up by walking the board (2017). Available at
https://www.audiodog.co.uk/blog/2017/12/10/better-stand-up-
by-walking-the-board/

Chapter 11
Scrum: 19 Sprint Planning Antipatterns (n.d.). Available at
https://dzone.com/articles/scrum-19-sprint-planning-anti-patter
ns

Chapter 12
What is Agile estimation? (n.d.). Available at
https://www.visual-paradigm.com/scrum/what-is-agile-estimati
on/

https://thedigitalprojectmanager.com/scrum-ceremonies-made

175

https://thedigitalprojectmanager.com/scrum-ceremonies-made-simple/
https://thedigitalprojectmanager.com/scrum-ceremonies-made-simple/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.visual-paradigm.com/scrum/what-are-scrum-time-boxed-events/
https://www.visual-paradigm.com/scrum/what-are-scrum-time-boxed-events/
https://www.visual-paradigm.com/scrum/what-is-sprint-in-scrum/
https://www.visual-paradigm.com/scrum/what-is-sprint-in-scrum/
https://www.projectmanager.com/blog/burndown-chart-what-is-it
https://www.projectmanager.com/blog/burndown-chart-what-is-it
https://www.projectmanager.com/blog/what-is-a-scrum-board
https://www.audiodog.co.uk/blog/2017/12/10/better-stand-up-by-walking-the-board/
https://www.audiodog.co.uk/blog/2017/12/10/better-stand-up-by-walking-the-board/
https://dzone.com/articles/scrum-19-sprint-planning-anti-patterns
https://dzone.com/articles/scrum-19-sprint-planning-anti-patterns
https://www.visual-paradigm.com/scrum/what-is-agile-estimation/
https://www.visual-paradigm.com/scrum/what-is-agile-estimation/

How do waterfall and agile project estimates differ? (2018).
Available at
https://swarmonline.com/how-do-waterfall-and-agile-project-e
stimates-differ/

Chapters 13, 14
Agile estimation with the bucket system (n.d.). Available at
https://www.101ways.com/agile-estimation-with-the-bucket-sy
stem/
How can we get the best estimates of story size? (n.d.).
Available at
https://www.mountaingoatsoftware.com/blog/how-can-we-get-
the-best-estimates-of-story-size
Planning Poker (n.d.). Available at
https://www.mountaingoatsoftware.com/agile/planning-poker
Seven Agile estimation techniques (2016). Available at
https://technology.amis.nl/agile/8-agile-estimation-techniques-
beyond-planning-poker/
Story Points estimates are best thought of as range (n.d.).
Available at
https://www.mountaingoatsoftware.com/blog/story-point-estim
ates-are-best-thought-of-as-ranges

Chapter 15
Definition of Ready Template: what needs to be completed
before adding a story to a sprint (2018). Available at
https://www.linkedin.com/pulse/definition-ready-template-what
-needs-completed-before-ignacio-paz/
The dangers of a Definition of Ready (n.d.). Available at
https://www.mountaingoatsoftware.com/blog/the-dangers-of-a
-definition-of-ready
Walking through a definition of ready (2017). Available at
https://www.scrum.org/resources/blog/walking-through-definiti
on-ready

176

https://swarmonline.com/how-do-waterfall-and-agile-project-estimates-differ/
https://swarmonline.com/how-do-waterfall-and-agile-project-estimates-differ/
https://www.101ways.com/agile-estimation-with-the-bucket-system/
https://www.101ways.com/agile-estimation-with-the-bucket-system/
https://www.mountaingoatsoftware.com/blog/how-can-we-get-the-best-estimates-of-story-size
https://www.mountaingoatsoftware.com/blog/how-can-we-get-the-best-estimates-of-story-size
https://www.mountaingoatsoftware.com/agile/planning-poker
https://technology.amis.nl/agile/8-agile-estimation-techniques-beyond-planning-poker/
https://technology.amis.nl/agile/8-agile-estimation-techniques-beyond-planning-poker/
https://www.mountaingoatsoftware.com/blog/story-point-estimates-are-best-thought-of-as-ranges
https://www.mountaingoatsoftware.com/blog/story-point-estimates-are-best-thought-of-as-ranges
https://www.linkedin.com/pulse/definition-ready-template-what-needs-completed-before-ignacio-paz/
https://www.linkedin.com/pulse/definition-ready-template-what-needs-completed-before-ignacio-paz/
https://www.mountaingoatsoftware.com/blog/the-dangers-of-a-definition-of-ready
https://www.mountaingoatsoftware.com/blog/the-dangers-of-a-definition-of-ready
https://www.scrum.org/resources/blog/walking-through-definition-ready
https://www.scrum.org/resources/blog/walking-through-definition-ready

What is a definition of ready? (n.d.). Available at
https://agility.im/frequent-agile-question/what-is-a-definition-of-
ready/

Chapters 16, 17
Agile estimation with the bucket system (n.d.). Available at
https://www.101ways.com/agile-estimation-with-the-bucket-sy
stem/
How can we get the best estimates of story size? (n.d.).
Available at
https://www.mountaingoatsoftware.com/blog/how-can-we-get-
the-best-estimates-of-story-size
How do waterfall and agile project estimates differ? (2018).
Available at
https://swarmonline.com/how-do-waterfall-and-agile-project-e
stimates-differ/
How to play the team estimation game (2012). Available at
https://agilelearninglabs.com/2012/05/how-to-play-the-team-e
stimation-game/
Planning Poker (n.d.). Available at
https://www.mountaingoatsoftware.com/agile/planning-poker
Seven Agile estimation techniques (2016). Available at
https://technology.amis.nl/agile/8-agile-estimation-techniques-
beyond-planning-poker/
Story Points estimates are best thought of as range (n.d.).
Available at
https://www.mountaingoatsoftware.com/blog/story-point-estim
ates-are-best-thought-of-as-ranges
What is Agile estimation? (n.d.). Available at
https://www.visual-paradigm.com/scrum/what-is-agile-estimati
on/

177

https://agility.im/frequent-agile-question/what-is-a-definition-of-ready/
https://agility.im/frequent-agile-question/what-is-a-definition-of-ready/
https://www.101ways.com/agile-estimation-with-the-bucket-system/
https://www.101ways.com/agile-estimation-with-the-bucket-system/
https://www.mountaingoatsoftware.com/blog/how-can-we-get-the-best-estimates-of-story-size
https://www.mountaingoatsoftware.com/blog/how-can-we-get-the-best-estimates-of-story-size
https://swarmonline.com/how-do-waterfall-and-agile-project-estimates-differ/
https://swarmonline.com/how-do-waterfall-and-agile-project-estimates-differ/
https://agilelearninglabs.com/2012/05/how-to-play-the-team-estimation-game/
https://agilelearninglabs.com/2012/05/how-to-play-the-team-estimation-game/
https://www.mountaingoatsoftware.com/agile/planning-poker
https://technology.amis.nl/agile/8-agile-estimation-techniques-beyond-planning-poker/
https://technology.amis.nl/agile/8-agile-estimation-techniques-beyond-planning-poker/
https://www.mountaingoatsoftware.com/blog/story-point-estimates-are-best-thought-of-as-ranges
https://www.mountaingoatsoftware.com/blog/story-point-estimates-are-best-thought-of-as-ranges
https://www.visual-paradigm.com/scrum/what-is-agile-estimation/
https://www.visual-paradigm.com/scrum/what-is-agile-estimation/

Chapter 18
Are people problems creating estimation problems? (n.d.).
Available at
https://www.mountaingoatsoftware.com/blog/are-people-probl
ems-creating-estimating-problems
Does the perfect estimate exist? (n.d.). Available at
https://www.mountaingoatsoftware.com/blog/does-the-perfect-
estimate-exist-free-video-training
The five possible estimates and which one your team should
use (n.d.). Available at
https://www.mountaingoatsoftware.com/blog/the-five-possible-
estimates-and-which-one-your-team-should-use

Chapter 19
Better user stories (n.d.). Available at
https://mountain-goat-software.thinkific.com/courses/better-us
er-stories-professional
SPIDR, five simple techniques for a perfectly split user story
(2017). Available at
https://blogs.itemis.com/en/spidr-five-simple-techniques-for-a-
perfectly-split-user-story

Chapter 20
Agile maturity assessments: going back to Shu Ha Ri (2021).
Available at
https://zenexmachina.com/agile-maturity-assessments-going-
back-to-shu-ha-ri/
Shu Ha Ri Agile, a fantastic tool for Agile Coaches (2019).
Available at
https://luis-goncalves.com/shu-ha-ri-agile-coaches/

Chapter 21
Five agile metrics you won’t hate (n.d.). Available at
https://www.atlassian.com/agile/project-management/metrics

178

https://www.mountaingoatsoftware.com/blog/are-people-problems-creating-estimating-problems
https://www.mountaingoatsoftware.com/blog/are-people-problems-creating-estimating-problems
https://www.mountaingoatsoftware.com/blog/does-the-perfect-estimate-exist-free-video-training
https://www.mountaingoatsoftware.com/blog/does-the-perfect-estimate-exist-free-video-training
https://www.mountaingoatsoftware.com/blog/the-five-possible-estimates-and-which-one-your-team-should-use
https://www.mountaingoatsoftware.com/blog/the-five-possible-estimates-and-which-one-your-team-should-use
https://mountain-goat-software.thinkific.com/courses/better-user-stories-professional
https://mountain-goat-software.thinkific.com/courses/better-user-stories-professional
https://blogs.itemis.com/en/spidr-five-simple-techniques-for-a-perfectly-split-user-story
https://blogs.itemis.com/en/spidr-five-simple-techniques-for-a-perfectly-split-user-story
https://zenexmachina.com/agile-maturity-assessments-going-back-to-shu-ha-ri/
https://zenexmachina.com/agile-maturity-assessments-going-back-to-shu-ha-ri/
https://luis-goncalves.com/shu-ha-ri-agile-coaches/
https://www.atlassian.com/agile/project-management/metrics

How to get value measuring agile team health metrics (2019).
Available at
https://www.agileconnection.com/article/how-get-value-measu
ring-agile-team-health-metrics
Seven useful agile metrics that optimise for learning (n.d.).
Available at https://www.solutioneers.co.uk/agile-metrics/

Chapter 22
Five tips for better agile release planning (2021). Available at
https://www.projectmanager.com/blog/agile-release-planning-t
ips
How to create an agile release plan (n.d.). Available at
https://www.lucidchart.com/blog/agile-release-planning
Overview agile release planning (n.d.). Available at
https://www.pmmajik.com/overview-agile-release-planning/
Release planning (n.d.). Available at
https://www.knowledgehut.com/tutorials/scrum-tutorial/release
-planning

Chapter 23
Agile game - battleship (2019). Available at
https://onbelay.co/articles/2019/2/6/agile-game-battleship
Agile games - ball point game (n.d.). Available at
https://www.101ways.com/agile-games-ball-point-game/
Ball point game - introducing agile by the fun way (2017).
Available at
https://www.plays-in-business.com/ball-point-game-introducin
g-agile-by-the-fun-way/
You sunk my methodology (n.d.). Available at
https://www.tastycupcakes.org/2012/02/you-sunk-my-method
ology/

179

https://www.agileconnection.com/article/how-get-value-measuring-agile-team-health-metrics
https://www.agileconnection.com/article/how-get-value-measuring-agile-team-health-metrics
https://www.solutioneers.co.uk/agile-metrics/
https://www.projectmanager.com/blog/agile-release-planning-tips
https://www.projectmanager.com/blog/agile-release-planning-tips
https://www.lucidchart.com/blog/agile-release-planning
https://www.pmmajik.com/overview-agile-release-planning/
https://www.knowledgehut.com/tutorials/scrum-tutorial/release-planning
https://www.knowledgehut.com/tutorials/scrum-tutorial/release-planning
https://onbelay.co/articles/2019/2/6/agile-game-battleship
https://www.101ways.com/agile-games-ball-point-game/
https://www.plays-in-business.com/ball-point-game-introducing-agile-by-the-fun-way/#:~:text=The%20game%20simulates%20an%20agile,team%20by%20following%20certain%20rules
https://www.plays-in-business.com/ball-point-game-introducing-agile-by-the-fun-way/#:~:text=The%20game%20simulates%20an%20agile,team%20by%20following%20certain%20rules
https://www.tastycupcakes.org/2012/02/you-sunk-my-methodology/
https://www.tastycupcakes.org/2012/02/you-sunk-my-methodology/

Chapter 24
Essential SAFe: most common challenges moving to Scaled
Agile Framework (2021). Available at
https://www.bacancytechnology.com/blog/scaling-agile-imple
mentation-challenges
Five common challenges faced when scaling agile (2021).
Available at https://kendis.io/scaling-agile/challenges/
Scaling Agile: how to overcome 3 common challenges when
scaling agile (n.d.). Available at
https://www.planview.com/resources/guide/what-is-agile-progr
am-management/scaling-agile-common-challen/

Chapter 25
Agile at scale (n.d.). Available at
https://www.atlassian.com/agile/agile-at-scale
Disciplined Agile Delivery (2018). Available at
https://kendis-io.medium.com/disciplined-agile-delivery-dad-cf
0d1b6ffb13
Scaled Agile Approaches (n.d.). Available at
https://teamhood.com/agile/safe-vs-sos-vs-dad-vs-less/
Scaling Agile: an overview of popular frameworks (n.d.).
Available at
https://www.actonic.de/en/scaling-agile-an-overview-of-popula
r-frameworks/
Scaling Scrum with Nexus (n.d.). Available at
https://www.scrum.org/resources/scaling-scrum
Six Scaled Agile Frameworks - which one is right for you?
(n.d.). Available at
https://www.digite.com/blog/scaled-agile-frameworks/

Scrum Vocabulary
Agile tutorial (n.d.). Available at
https://www.visual-paradigm.com/tutorials/agile-tutorial/how-to
-identify-scrum-project-stakeholders/

180

https://www.bacancytechnology.com/blog/scaling-agile-implementation-challenges
https://www.bacancytechnology.com/blog/scaling-agile-implementation-challenges
https://kendis.io/scaling-agile/challenges/
https://www.planview.com/resources/guide/what-is-agile-program-management/scaling-agile-common-challen/
https://www.planview.com/resources/guide/what-is-agile-program-management/scaling-agile-common-challen/
https://www.atlassian.com/agile/agile-at-scale
https://kendis-io.medium.com/disciplined-agile-delivery-dad-cf0d1b6ffb13
https://kendis-io.medium.com/disciplined-agile-delivery-dad-cf0d1b6ffb13
https://teamhood.com/agile/safe-vs-sos-vs-dad-vs-less/
https://www.actonic.de/en/scaling-agile-an-overview-of-popular-frameworks/
https://www.actonic.de/en/scaling-agile-an-overview-of-popular-frameworks/
https://www.scrum.org/resources/scaling-scrum
https://www.digite.com/blog/scaled-agile-frameworks/
https://www.visual-paradigm.com/tutorials/agile-tutorial/how-to-identify-scrum-project-stakeholders/
https://www.visual-paradigm.com/tutorials/agile-tutorial/how-to-identify-scrum-project-stakeholders/

Agile modelling (n.d.). Available at
https://en.wikipedia.org/wiki/Agile_modeling
Unified process (n.d.). Available at
https://www.sciencedirect.com/topics/computer-science/unifie
d-process
Kanban pull system (n.d.). Available at
https://kanbanzone.com/resources/kanban/kanban-pull-syste
m/

181

https://en.wikipedia.org/wiki/Agile_modeling
https://www.sciencedirect.com/topics/computer-science/unified-process
https://www.sciencedirect.com/topics/computer-science/unified-process
https://kanbanzone.com/resources/kanban/kanban-pull-system/
https://kanbanzone.com/resources/kanban/kanban-pull-system/

	Introduction
	Part I - Introduction to Agile
	1.1 - Origins of Agile
	1.2 - Agile vs Waterfall: which one is
	1.3 - Agile and Lean
	1.4 - Agile frameworks
	Part II - Scrum Roles and Rules
	2.5 - Origins of Scrum
	2.6 - Scrum Pillars and Values
	2.7 - The Game of Scrum
	Part III - Collection of Practical
	3.8 - Monitoring progress
	3.9 - A better stand-up by
	3.10 - 9 common Sprint Planning
	3.11 - Sailboat retrospective
	3.12 - User Stories and Story Points
	3.13 - Common mistakes when using
	3.14 - I.N.V.E.S.T. in good stories
	3.15 - Definition of Ready
	3.16 - Agile Estimation
	3.17 - Techniques for estimation
	3.18 - 4 practical suggestions
	3.19 - S.P.I.D.R.
	3.20 - The Shu-Ha-Ri model and
	3.21 - Metrics
	3.22 - Release Planning
	3.23 - Agile games
	Part IV - Agile games
	4.24 - Main challenges when scaling
	4.25 - Major frameworks for scaling
	Glossary
	Meet the Author
	Thank-you notes
	Bibliography
	Online References

